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Abstract

Particle methods, also known as Sequential Monte Carlo methods, represent

a general class of algorithms that approximate a sequence of distributions of

interest by a number of weighted particles. Particle methods are applied to

study nonlinear state space (NLSS) models for classical and Bayesian frame-

works. More specifically, the particle Monte Carlo Expectation Maximization

(MCEM) algorithm is introduced to conduct inference for NLSS models. The

particle MCEM algorithm, which constitutes the surrogate to approximate the

expectation in expectation step with weighted particles, is a special variant of

the MCEM algorithm and is tailored to inference for NLSS models.

In the implementation of the particle MCEM algorithm, choosing a precise

sample size at each iteration is an important issue. Renewal theory and the

central limit theorems of particle filters and smoothers are introduced to con-

struct confidence regions of the corresponding variables to deal with this issue.

Based on the confidence regions, an automated selection criterion is proposed

to boost the sample size as the estimation at any iteration is approaching the

one at the previous iteration.

To illustrate, the proposed methodology is applied to handle the stochastic

volatility model, which is a special case of NLSS models. Finally, the simulation

study and empirical analysis using this new approach are also presented.

i
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Chapter 1

Introduction

1.1 Problem Statement

This thesis focuses on the inference problem of nonlinear state space (NLSS)

models. Due to the non-Gaussian and nonlinear properties of these models,

the Kalman filter may be difficult to handle them. Particle methods have been

developed to solve this issue.

In this thesis, both maximum likelihood estimation and Bayesian analy-

sis for NLSS models are studied. For maximum likelihood estimation, the

Monte Carlo Expectation Maximization (MCEM) algorithm is used to get the

estimators, and the corresponding Monte Carlo sample is generated using a

newly-developed particle method (i.e., the particle Monte Carlo Marko chain

method). For Bayesian analysis, type II maximum likelihood prior is intro-

duced to obtain robust Bayesian estimators, and the MCEM algorithm is also

used to obtain the estimators. The particle Monte Carlo Marko chain method

and the resample-move algorithm are used to generate the Monte Carlo sample

in this framework.

Furthermore, several issues in the implementation of MCEM algorithm are

worth investigating. Choosing an appropriate sample size for each iteration is

a major concern because this may determine the balance between estimation

accuracy and computational cost. An attempt is made in this thesis to find a

1
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solution to this problem.

1.2 State Space Models

The state space models are widely used for statistical applications, such as

in time series modeling and signal processing. Consider a sequence of Markov

chain {Xt; t ∈ N} with initial distribution X0 ∼ ξ(·) and transition kernel (Xt |

Xt−1 = xt−1) ∼ f(· | xt−1), which is called a state process. The observed values

{Yt; t ∈ N} in the observation process are independently conditional on the

hidden states {Xt; t ∈ N} and the conditional distribution of Yt only depends

on the corresponding state Xt. In other words, (Yt | X0 = x0, . . . , Xt = xt) ∼

g(· | xt). These two processes compose a NLSS model or a Hidden Markov

model. For simplicity, denote x0:t , {x0, . . . , xt} and y0:t , {y0, . . . , yt}.

A special class of the state space models is the linear Gaussian state space

model. This type of model has a hierarchical structure with two equations:

the state equation

Xt = ΦXt−1 + AUt + Zt, (1.1)

and the observation equation

Yt = ΘXt +BUt + Vt, (1.2)

where Xt is a sequence of p × 1 random vectors for t = 0, . . . , T with initial

state X0 following a Gaussian distribution, Φ is a p× p unknown matrix, Ut is

a r×1 matrix of exogenous variables, Yt is a collection of q×1 random vectors

of observed variables for t = 0, . . . , T , Θ is a q × p unknown measurement

matrix, A and B are p× r and q× r unknown regression matrices, and Zt and

Vt are p× 1 and q × 1 independent and identically distributed normal vectors

with zero mean and covariance matrices Q and R respectively.

When the assumptions of linearity and Gaussianity are removed, the model

becomes a NLSS model, which is the model discussed in this thesis. Generally,
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inference for state space models entails the following posterior distributions.

Definition 1.1 For a collection of observations y0:T and state variables x0:T ,

joint smoothing distribution: φ0:t|t(x0:t) , p(x0:t | y0:t) for 0 ≤ t ≤ T ;

marginal smoothing distribution: φs|t(xs) , p(xs | y0:t) for 0 ≤ t ≤ T and

s < t;

filtering distribution: φt|t(xt) , p(xt | y0:t) for 0 ≤ t ≤ T ;

prediction distribution: φt+p|t(xt+p) , p(xt+p | y0:t) for 0 ≤ t ≤ T and

p > 0.

The joint smoothing distribution can be written as

φ0:t|t(x0:t) ∝ ξ(x0)g(y0 | x0)
t∏
i=1

f(xi | xi−1)g(yi | xi), (1.3)

and the recursion is obtained using Bayes’ theorem

φ0:t+1|t+1(x0:t+1) = φ0:t|t(x0:t)
f(xt+1 | xt)g(yt+1 | xt+1)

p(yt+1 | y0:t)
, (1.4)

where

p(yt+1 | y0:t) =

∫
φ0:t|t(x0:t)f(xt+1 | xt)g(yt+1 | xt+1) dx0:t+1.

It can be checked that the filtering distribution and the prediction distribution

are recursively related by integrating out x0:t, and the relationship is formu-

lated as follows

φt+1|t+1(xt+1) =
g(yt+1 | xt+1)φt+1|t(xt+1)

p(yt+1 | y0:t)
, (1.5)

and

φt+1|t(xt+1) =

∫
φt|t(xt)f(xt+1 | xt) dxt. (1.6)

The Kalman filter handles the inference for linear Gaussian state space

models successfully, but not typically for the NLSS models. The above for-

mulas show that all these distributions the common element p(yt+1 | y0:t).

However this density function does not have a closed form in NLSS models
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because it involves the calculation of complex and high-dimensional integrals.

Therefore, the approximations of these distributions are required to conduct

inference for NLSS models, and an effective way to make approximation is to

use particle methods, which is the primary topic of this thesis.

1.3 Thesis Structure

This thesis is organized as follows. Chapter 2 reviews the expetation maxi-

mization (EM) algorithm, particle filters and particle smoothers, which are the

primary statistical tools used in this thesis. In Chapter 3, inference for NLSS

models according to maximum likelihood estimation and Bayesian methods are

studied. To obtain the maximum likelihood estimation, the MCEM algorithm

is used, where the particle Markov chain Monte Carlo (PMCMC) method is

used to generate the Monte Carlo sample. For the Bayesian framework, type

II maximum likelihood prior is introduced and the MCEM algorithm is used

to deal with the corresponding inference. In Chapter 4, the method developed

in Chapter 3 is applied to the stochastic volatility model, a special case of the

NLSS model, and the corresponding simulation and empirical study is present-

ed in Chapter 5. Finally, the results of this thesis and the future researches

are presented in Chapter 6.

1.4 Contributions

NLSS models have been popular with the researchers in the previous two

decades, and there are numerous methods have been developed to infer these

models. The EM algorithm with particle methods is an effective tool when

performing maximum likelihood estimation. Although the EM algorithm with

forward filtering backward simulation (FFBSi), which is one of types of the

particle smoothers, is discussed in Kim and Stoffer (2008), FFBSi experiences
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particle degeneracy as time increases, resulting in a poor estimator based on

a small effective sample size of particles. Therefore, the EM algorithm is com-

bined with the particle Monte Carlo Markov chain method, which is developed

for particle smoothers to manage maximum likelihood estimation more effec-

tively.

A Bayesian estimator is also considered in this thesis. To obtain robust re-

sults, type II maximum likelihood prior which is an empirical Bayes approach,

is introduced. The EM algorithm along with particle methods are utilized

to manage this problem, and the resample-move algorithm and the PMCMC

method are chosen as the corresponding particle methods, respectively.

Another critical problem addressed in this thesis is the design of an au-

tomated rule to determine whether the Monte Carlo sample size should be

increased at each iteration. Although Booth and Robert (1999) and Levine

and Casella (2001) considered similar rules in the implementation of the M-

CEM algorithm, no discussion was presented regarding the particle MCEM

algorithm, which is different from the traditional MCEM algorithm. The cen-

tral limit theorem in Chopin (2004) causes the rule for sample size in Booth

and Robert (1999)to be effective when the MCEM with resample-move algo-

rithm is applied. For the MCEM with PMCMC algorithm, renewal theory

is used to construct confidence intervals of relative likelihood, and thus pro-

duce the automated rule for determining whether the sample size should be

increased at each iteration.
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Chapter 2

Literature Review

In this chapter, several critical methods and papers regarding the EM algo-

rithm and particle methods are reviewed. In Section 2.1, the EM algorithm

is introduced, in which the MCEM algorithm is a modification of the EM al-

gorithm. Several key algorithms of particle filters and particle smoothers are

presented in Section 2.2 and Section 2.3 respectively.

2.1 The Expectation Maximization Algorithm

The EM algorithm was first proposed in Dempster et al. (1977). It is a widely

applicable tool for iteratively computing the maximum likelihood estimators ,

particularly for incomplete data. The EM algorithm replaces the intractable

likelihood maximization problem of incomplete data with a sequence of maxi-

mization problems of complete data that are easier to handle. Each element in

the sequence represents an iteration in the EM algorithm, and the Expectation

step (E-step) and the maximization step (M-step) comprise each iteration.

Consider a model with observed variables y = (y1, . . . , yn), hidden variables

(or missing data) x = (x1, . . . , xn) and parameter θ. The densities g(· | θ) of

y and f(· | θ) of (y, x) have the relationship

g(y | θ) =

∫
f(y, x | θ) dx. (2.1)

6



www.manaraa.com

Chapter 2 Literature Review 7

Therefore, the logarithm of this likelihood function is

L(θ | y) = log g(y | θ) = log

∫
f(y, x | θ) dx. (2.2)

The target is to obtain the Maximum Likelihood Estimator (MLE) of the

parameter, defined as θML ≡ arg max
θ

L(θ | y). However, g(y | θ) has no closed

form in many cases, and the EM algorithm provides a useful approach to solve

this type of problem. Assume that a sequence {θ(r)} has been created from

an initial value θ(0), then θ(r+1) can be acquired according to the following two

steps:

E-Step. Calculate the expected log-likelihood function Q(θ, θ(r+1)), where

Q(θ, θ(r)) = E[log f(y, x | θ) | θ(r),y]; (2.3)

M-Step. Find the value θ(r+1) that maximizes Q(θ, θ(r)), meaning

θ(r+1) = arg max
θ

E[log f(y, x | θ) | θ(r),y]. (2.4)

Dempster et al. (1977) proves the properties of EM algorithm, and the primary

property is the monotonicity

L(θ(r+1) | y) ≥ L(θ(r) | y). (2.5)

In Wu (1983), it is shown that the sequence (θ(0), θ(1), . . . , θ(r)) converges to

the MLE θML as r →∞ under certain regularity conditions.

2.1.1 Monte Carlo Expectation Maximization Algorith-

m

When the EM algorithm is applied to complicated models, a dilemma arises.

The E-step typically cannot be implemented because it needs to compute a

complex or high-dimensional expectation. Therefore, the Monte Carlo EM (M-

CEM) algorithm was developed to solve this problem. The MCEM algorithm,
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as a modification of EM algorithm, was first introduced in Wei and Tanner

(1990). In this algorithm, a Monte Carlo sampling scheme is used to estimate

the expectation in E-step. Similar to an EM algorithm that has a Monte Carlo

E-step (MCE-step) instead of an E-step, the MCEM algorithm also has two

steps in each iteration. Assume that θ(r) has been given at the rth iteration,

then at the (r + 1)th iteration, execute the following steps:

MCE-Step. Estimate the expected log-likelihood function QM(θ, θ(r)),

QM(θ, θ(r)) =
1

M

M∑
j=1

log f(y,x∗j | θ), (2.6)

where x∗j is a random sample from f(x | θ(r),y);

M-Step. Find the value θ(r+1) that maximizes QM(θ, θ(r)), meaning

θ(r+1) = arg max
θ

1

M

M∑
j=1

log f(y,x∗j | θ). (2.7)

Because QM(θ, θ(r)) → Q(θ, θ(r)) a.s. as M → ∞, the larger Monte Carlo

sample size is, the more accurate the estimator QM(θ, θ(r)) is. However, the

computation time increases when the sample size increases. In the MCEM

algorithm, choosing the right sample size is an critical issue because it strikes

a balance between the estimation accuracy and computational cost. In Booth

and Robert (1999), an automated rule is designed to increase the sample size

of independent sample for a generalized linear mixed model if the true EM step

is covered by Monte Carlo error, where the central limit theorem and Taylor

expansion are combined to access the Monte Carlo error at each iteration.

With the rapid development of the MCMC method in the MCEM algorithm

(see Chan and Ledolter (1995), McCulloch (1994), McCulloch (1997)) and

Levine and Casella (2001) developed an automated scheme to increase the

number of sample size if the Monte Carlo error exceeds the EM estimator at

any iteration and this rule is tailored to the sample from the MCMC method.
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Although the MCEM algorithm is more convenient to use than the origi-

nal EM algorithm, it does not have the property of monotonicity, one of the

key properties of the EM algorithm. Booth and Robert (1999) and Chan

and Ledolter (1995) have shown that the sequence produced by the MCEM

algorithm approaches the maximizer with a high probability in certain cases.

2.2 Particle Filters

Particle filters, also called Sequential Monte Carlo (SMC) algorithms, refer to

a class of algorithms that use weighted particles to approximate a sequence

of filtering distributions of interest. Although the SMC algorithm started

to capture attention from the statisticians in the 1990s, its basic idea was

developed from the sequential importance sampling (SIS), which is proposed

in Handschin and Mayne (1969). In this section, a brief description of particle

filters is presented.

2.2.1 Sequential Importance Sampling

SIS is an extension of importance sampling (IS). The basic idea of IS (Ham-

mersley and Handscomb (1964)) is shown in the following equations

Ep (f(X)) =

∫
f(x)p(x) dx =

∫
f(x)p(x)

q(x)
q(x) dx = Eq

(
f(X)p(X)

q(X)

)
,

(2.8)

where Ep and Eq denote expectation for X ∼ p and X ∼ q respectively. Set

the weights as

w(X) =
p(X)

q(X)
, (2.9)

then the importance estimator of Ep (f(X)) is

1

N

N∑
i=1

f(xi)w(xi), (2.10)
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where {xi}Ni=1 is an i.i.d. sample from q. According to the strong law of large

numbers, this estimator converges to Ep (f(X)) almost surely.

SIS extends IS to a sequence of target distributions. Here SIS is introduced

within the framework of NLSS models. Suppose that the target is to attain

a sample from a sequence of filtering distributions φt|t(xt), t = 1, . . . , T , then

SIS consists of the procedures listed in Algorithm 1.

Algorithm 1 Sequential importance sampling

Ensure: {xit, ωit}Ni=1 approximates φt|t(xt).
1: for t=1, . . . , T do
2: simulate xit+1 ∼ q(· | xit), i = 1, . . . , N ;
3: compute the incremental weights

wt+1(xit, x
i
t+1) =

f(xit+1 | xit)g(yt+1 | xit+1)

q(xit+1 | xit)
, i = 1, . . . , N ;

4: update the weights ωit+1 = ωitwt+1(xit, x
i
t+1), i = 1, . . . , N .

5: end for
6: Take {xit+1, ω

i
t+1}Ni=1 as an approximation for φt+1|t+1(xt+1).

2.2.2 Sampling Importance Resampling

Another indispensable element of particle filters is the sampling importance

resampling introduced in Rubin (1987). Sampling importance resampling typ-

ically adds a resampling step into IS. Assume that the target is to draw a

sample from a distribution proportional to the function p(x), but it is difficult

to simulate from p(x) directly. The sampling importance resampling can be

used to address this problem, and its procedures are summarized in Algorithm

2.

2.2.3 Sequential Importance Sampling and Resampling

SIS is designed to manage a sequence of target distributions. However, as

the length of a sequence increases, this algorithm suffers from the degeneracy
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Algorithm 2 Sampling importance resampling

1: Simulate x1, . . . , xN from the proposal distribution q(x);
2: compute the unnormalized weights w(xi) as Eq.(2.9), i = 1, . . . , N ;
3: calculate the normalized weights

ωi =
w(xi)∑N
j=1w(xj)

, i = 1, . . . , N ;

4: draw {x′i}Ni=1 independently from the set {xi}Ni=1 with the probabilities
{ωi}Ni=1.

5: Then {x′i}Ni=1 is a sample from the distribution proportional to p(x).

of the importance weights: most of the importance weights tend to 0, which

causes the effective sample size to be small and the strong law of large numbers

to no longer apply. To solve this problem, Gordon et al. (1993) introduces

the sampling importance resampling scheme to the framework of SIS, which is

regarded as the first work performed on particle filters (also known as bootstrap

particle filter). The sequential importance sampling and resampling (SISR)

scheme, which combines SIS and sampling importance resampling, is presented

in Algorithm 3.

Several schemes exist to operate the resampling step. The intuitive method

is multinomial resampling proposed in Gordon et al. (1993). This scheme is

to draw N new particles {xit+1}Ni=1 with replacement from the original pool

{x̃it+1}Ni=1 with the corresponding importance weights {ω̃it+1}Ni=1, which is e-

quivalent to drawing a sample from a multinomial distribution

M | {x̃it+1, ω̃
i
t+1}Ni=1 ∼Multinomial(N, {ω̃it+1}Ni=1), (2.11)

where M is an N -dimensional random vector in which the ith element repre-

sents the number of x̃it+1 in the new particles.

Another scheme is residual resampling introduced in Liu and Chen (1995).

Unlike multinomial resampling, the number of each original particle in this

resampling method is the sum of two parts: a deterministic part and a random

part. In the deterministic part, the number of x̃it+1 in the new set is bNω̃it+1c,
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Algorithm 3 Sequential importance sampling and resampling

Ensure: {xit, ωit}Ni=1 approximates φt|t(xt).
1: (Sampling:)
2: for i=1, . . . , N do
3: simulate x̃it+1 ∼ q(· | xit);
4: compute the incremental weights

wt+1(xit, x̃
i
t+1) =

f(x̃it+1 | xit)g(yt+1 | x̃it+1)

q(x̃it+1 | xit)
;

5: update the weights ω̃it+1 = ωitwt+1(xit, x̃
i
t+1).

6: end for
7: (Resamping:)
8: draw index I1

t+1, . . . , I
N
t+1 independently with the probability

P (It+1 = j) = ω̃jt+1, j = 1, . . . , N ;

9: set xit+1 = x̃
Iit+1

t+1 and ωit+1 = 1 for i = 1, . . . , N .
10: Take {xit+1, ω

i
t+1}Ni=1 as an approximation for φt+1|t+1(xt+1).

where bxc represents the largest integer that is smaller than x. A total of Ñ =

N−
∑N

i=1bNω̃it+1c particles are left in the random part, and these particles are

drawn from a multinomial distribution. Hence, the total number of particles

in the new set becomes

M =
(
bNω̃1

t+1c, . . . , bNω̃Nt+1cc
)

+ M̃, (2.12)

where M̃ ∼Multinomial(Ñ , {ω̃it+1}Ni=1).

Compared with multinomial resampling, residual resampling reduces the

variance of the estimators. Another method is systematic resampling (Carpen-

ter et al. (1999)), which also serves the same purpose. This method designs

an algorithm that satisfies the difference between the number of x̃it+1 in the

new set and Nω̃it+1 is no larger than 1.
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2.2.4 Auxiliary Particle Filters

SISR has several drawbacks. The importance weights are extremely uneven

when the observations contain an outlier, which requires an exceedingly large

number of particles to approximate the target distribution. To solve this prob-

lem, a modified particle filters called an auxiliary particle filter (APF) is pro-

posed in Pitt and Shephard (1999). An APF combines the information from

the new coming observation and the importance weights generated in the pre-

vious iteration to calculate the new importance weights and then performs the

resampling step at the beginning of each iteration. To implement this idea,

Pitt and Shephard (1999) introduces an auxiliary variable to particle filters.

Together with the auxiliary variable k, the target distribution becomes the

joint distribution

p(xt+1, k | y0:t+1) ∝ g(yt+1 | xt+1)f(xt+1 | xkt )ωkt , k = 1, . . . , N. (2.13)

Since {xkt , ωkt }Nk=1 also approximates φt|t(xt), the joint distribution is written

as a mixture distribution related to {xkt , ωkt }Nk=1. Based on the idea of the

SIR algorithm, a proposal distribution q(xt+1, k | y0:t+1) is used and then the

importance weight is proportional to

g(yt+1 | xt+1)f(xt+1 | xkt )ωkt
q(xt+1, k | y0:t+1)

. (2.14)

In the APF framework, the proposal distribution is

q(xt+1, k | y0:t+1) ∝ q1(yt+1 | µkt+1)q2(xt+1 | xkt )ωkt , k = 1, . . . , N, (2.15)

where µkt+1 can be some key value related to xt+1 | xkt , for example, the mean

or the mode. According to Eq.(2.14), the importance weight is

ω̃t+1 ∝
g(yt+1 | xt+1)f(xt+1 | xkt )
q1(yt+1 | µkt+1)q2(xt+1 | xkt )

. (2.16)

In this setting, first draw the index k ∼ q(k | y0:t+1) ∝ q1(yt+1 | µkt+1)ωkt , and

then simulate the state variable xt+1 ∼ q2(xt+1 | xkt ). The sample {xit+1, k
i}Ni=1
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is obtained with the corresponding weights defined in Eq.(2.16), which ap-

proximates to the joint distribution p(xt+1, k | y0:t+1). Therefore, the weighted

sample {xit+1, ω̃
i
t+1}Ni=1 approximates the marginal distribution p(xt+1 | y0:t+1).

The entire procedure of APF is presented in Algorithm 4.

Algorithm 4 Auxiliary particle filters

Ensure: {xit, ωit}Ni=1 approximates φt|t(xt).

1: compute the first-stage unnormalized weights λ̃kt+1 = q1(yt+1 | µkt+1)ωkt , k =
1, . . . , N .

2: for i=1, . . . , N do
3: draw index ki from the set {1, . . . , N} with respect to the probability

P (ki = j) =
λ̃jt+1∑N
m=1 λ̃

m
t+1

, j = 1, . . . , N ;

4: sample x̃it+1 ∼ q2(· | xkit );
5: calculate the second-stage unnormalized weights

ω̄it+1 =
g(yt+1 | x̃it+1)f(x̃it+1 | xk

i

t )

q1(yt+1 | µk
i

t+1)q2(x̃it+1 | xk
i

t )
.

6: end for
7: Compute the second-stage normalized weights

ω̃jt+1 =
ω̄jt+1∑N
m=1 ω̄

m
t+1

, j = 1, . . . , N ;

8: draw index I1
t+1, . . . , I

N
t+1 independently with the probability

P (It+1 = j) = ω̃t+1, j = 1, . . . , N ;

9: set xit+1 = x̃
Iit+1

t+1 and ωit+1 = 1 for i = 1, . . . , N .
10: Take {xit+1, ω

i
t+1}Ni=1 as an approximation for φt+1|t+1(xt+1).

2.2.5 Resample-move Algorithm

Although sampling importance resampling is introduced to SIS, SISR contin-

ues to cause the impoverishment of particles when static unknown parameters
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are involved. Because no new-coming particle exists, less and less particles

remain; therefore, the strong law of large numbers becomes invalid in this sit-

uation. In Gilks and Berzuini (2001), a move step is added after the resampling

step. In this step, the particles are renewed using a transition kernel with a

stationary distribution. The Markov Chain Monte Carlo (MCMC) algorithm

is typically applied to construct this kernel. Because the resampled particles

are the sample from the target distribution, only one iteration of the MCM-

C move is required to rejuvenate the particles. Assume that the sequence of

target distributions are πt(θ), the resample-move algorithm is summarized in

Algorithm 5.

Algorithm 5 Resample-move algorithm

Ensure: {θit, ωit}Ni=1 approximates πt(θ).
1: (Resampling step:)
2: for i=1, . . . , N do
3: compute the importance weights

ω̃it+1 ∝ ωit
πt+1(θit)

πt(θit)
.

4: end for
5: Draw index I1

t+1, . . . , I
N
t+1 independently with the probability

P (It+1 = j) = ω̃jt+1, j = 1, . . . , N ;

6: set θ̃it+1 = θ
Iit+1

t and ωit+1 = 1 for i = 1, . . . , N .
7: (Move step:)
8: renew the particles by sampling

θit+1 ∼ qt+1(·, θ̃it+1),

where qt+1 is a transition kernel of stationary distribution πt+1.
9: Take {θit+1, ω

i
t+1}Ni=1 as an approximation for πt+1(θ).

Although Chopin (2002) classifies this algorithm into particle filters, it is

typically used to do parameter learning, which involves the sequential and joint

learning of state variables and parameters. Its application to the NLSS models
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is discussed in Section 3.2.1.

2.3 Particle Smoothers

In the previous section, particle filters that produce the sample approximating

the filtering distributions have been discussed. In this section, algorithms

called particle smoothers, which are related to but more complicated than

particle filters, are presented. The target distributions becoming smoothing

distributions cause additional challenges because of the increasing dimension

of variables as the process evolves.

In Kitagawa (1996), an algorithm is proposed with the same basic idea

as Gordon et al. (1993) to manage both filtering distributions and smooth-

ing distributions. Hürzeler and Künsch (1998) proposes the basic idea of the

forward filtering backward smoothing (FFBSm) algorithm, and Godsill et al.

(2001) introduces this algorithm to deal with maximum a posteriori sequence

estimation in nonlinear and non-Gaussian dynamic models. The marginal s-

moothing distributions are the distributions of interest. Subsequently, Godsill

et al. (2004) introduces the FFBSi algorithm to approximate joint smoothing

distributions. Andrieu et al. (2010) proposes the PMCMC algorithm, which

combines the idea of particle methods and the MCMC algorithm. As a special

case of PMCMC, the particle independent Metropolis-Hastings (PIMH) algo-

rithm can be used to obtain particles from the joint smoothing distribution. In

the remainder of this section, the FFBSi algorithm and the PIMH algorithm

are introduced.

2.3.1 Forward Filtering Backward Simulation

The FFBSi algorithm consists of two segments. The first segment is the for-

ward filtering part, and the methods introduced in Section 2.2 can be used
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to obtain weighted samples approximating the filtering distribution. The sec-

ond segment is the backward process, which updates the previous particles to

approximate the joint smoothing distribution.

The joint smoothing distribution can be written as

φ0:t|t(x0:t) = p(xt | y1:t)
t−1∏
i=0

p(xi | xi+1:t, y1:t)

= φt|t(xt)
t−1∏
i=0

p(xi | xi+1, y1:i)

∝ φt|t(xt)
t−1∏
i=0

φi|i(xi)f(xi+1 | xi). (2.17)

In the forward filtering step, the weighted particles {xji , ω
j
i }Nj=1 are obtained

to approximate the filtering distribution φi|i(xi) for i = 0, . . . , t. According

to Eq.(2.17), the particles with respect to the smoothing distribution can be

obtained using the following approximation for i = t− 1, . . . , 0 recursively

p(xi | xi+1:t, y1:t) = p(xi | xi+1, y1:i) ≈
N∑
j=1

ω
(j)
i|i+1δxji

(xi), (2.18)

where the importance weight is

ω
(j)
i|i+1 =

ωji f(xi+1 | xji )∑N
k=1 ω

k
i f(xi+1 | xki )

. (2.19)

The FFBSi is summarized in Algorithm 6.

2.3.2 Particle Independent Metropolis-Hastings

It is intuitive to use the MCMC method to manage the joint smoothing distri-

bution. However, it is difficult to find an efficient high-dimensional proposal

distribution in an original way. Andrieu et al. (2010) combines the MCM-

C algorithms and SMC method to propose the PMCMC method, where the

SMC method is used to provide suitable proposal distributions for MCMC

algorithms.
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Algorithm 6 Forward filtering backward simulation

Ensure: {xji , ω
j
i }Nj=1 approximates φi|i(xi) for i = 0, . . . , t.

1: for l=1, . . . , N do
2: Draw index I lt with the probability

P (It = j) = ωjt , j = 1, . . . , N ;

3: set x̃lt = x
Ilt
t .

4: for i=t-1, . . . , 0 do
5: compute the importance weights

ω
(j)
i|i+1 =

ωji f(x̃li+1 | x
j
i )∑N

k=1 ω
k
i f(x̃li+1 | xki )

, j = 1, . . . , N ;

6: draw index I li with the probability

P (Ii = j) = ω
(j)
i|i+1, j = 1, . . . , N ;

7: set x̃li = x
Ili
i .

8: end for
9: end for

10: Take {x̃j0:t}Nj=1 as an approximation for φ0:t|t(x0:t).
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One of the key elements of the PMCMC method is to find an unbiased

estimator for the marginal distribution p(y1:t | θ), which is denoted by pθ(y1:t).

For simplicity, the distributions related to θ are denoted using the similar forms

for the remainder of this thesis. Because

pθ(y1:t) = pθ(y1)
t∏
i=2

pθ(yi | y1:i−1), (2.20)

where

pθ(yi | y1:i−1) =

∫
pθ(x1:i, y1:i)

pθ(y1:i−1)
dx1:i

=

∫
pθ(x1:i, y1:i)pθ(x1:i−1 | y1:i−1)

pθ(x1:i−1, y1:i−1)
dx1:i

=

∫
wi(x1:i)qθ(xi | xi−1, yi)pθ(x1:i−1 | y1:i−1) dx1:i, (2.21)

and

wi(x1:i) =
pθ(x1:i, y1:i)

pθ(x1:i−1, y1:i−1)qθ(xi | xi−1, yi)
, (2.22)

which is the unnormalized importance weight at the ith iteration of the SMC

methods, the following estimator can be used

p̂θ(y1:t) = p̂θ(y1)
t∏
i=2

p̂θ(yi | y1:i−1), (2.23)

where

p̂θ(yi | y1:i−1) =
1

N

N∑
k=1

ŵi(x
k
1:i). (2.24)

The unbiasedness of the estimator in Eq.(2.23) is proved in Pitt and Silva

(2012). Based on the above estimator, the PIMH algorithm is presented in

Algorithm 7. More details about the rationale of PIMH are provided in Douc

et al. (2014).
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Algorithm 7 Particle independent Metropolis-Hastings

1: for k=1 do
2: run a SMC algorithm targeting φ0:t|t(x0:t), obtain the correspond-

ing weighted particles {xj0:t, ω
j
t}Nj=1, and compute p̂θ(y1:t)(1) according

Eq.(2.23);
3: draw index I with the probability P (I = j) = ω̃jt , j = 1, . . . , N , where

ω̃t is the normalized weight;
4: set x0:t(1) = xI0:t.
5: end for
6: for k=2, . . . , M do
7: run a SMC algorithm targeting φ0:t|t(x0:t), obtain the corresponding

weighted particles {xj0:t, ω
j
t}Nj=1, and compute p̂θ(y1:t)

∗;
8: calculate the acceptance rate

r = min

{
1,

p̂θ(y1:t)
∗

p̂θ(y1:t)(k − 1)

}
;

9: draw U uniformly on [0, 1];
10: if U ≤ r, draw index I with the probability P (I = j) = ω̃jt , j = 1, . . . , N ,

set x0:t(k) = xI0:t and p̂θ(y1:t)(k) = p̂θ(y1:t)
∗; otherwise set x0:t(k) =

x0:t(k − 1) and p̂θ(y1:t)(k) = p̂θ(y1:t)(k − 1).
11: end for
12: Burn the first bM/cc steps, take {x0:t(k)}Mk=bM/cc+1 as an approximation

for φ0:t|t(x0:t), where c is a positive constant.
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Inference for Nonlinear State

Space Models

In this chapter, the maximum likelihood estimation and Bayesian analysis of

inference for NLSS models are studied. Because the densities involved in NLSS

models are high-dimensional with no closed forms, particle methods are used to

approximate the corresponding densities. Section 3.1 introduces the particle-

based maximum likelihood estimation for NLSS models, and Bayesian analysis

for these models is presented in Section 3.2.

3.1 Maximum Likelihood Estimation for Non-

linear State Space Models

In the NLSS models, the likelihood function of observations y0:T is

L(θ | y0:T ) = pθ(y0:T )

=

∫
· · ·
∫
ξ(x0)gθ(y0 | x0)

T∏
i=1

fθ(xi | xi−1)gθ(yi | xi) dx0:T

= pθ(y0)
T∏
i=1

pθ(yi | y1:i−1), (3.1)

21
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where

pθ(yi | y1:i−1) =

∫ ∫
φθi−1|i−1(xi−1)fθ(xi | xi−1)gθ(yi | xi) dxi−1:i. (3.2)

Because the latent variables x0:T are involved in this model, the EM algorithm

is tailored to obtain the MLE. To obtain

arg max
θ

L(θ | y0:T ), (3.3)

the latent variables x0:T are augmented to form the complete likelihood

L(θ | x0:T , y0:T ) = pθ(x0:T , y0:T ). (3.4)

In the EM algorithm, a sequence {θ(r)} is obtained from a starting point θ(0)

by

θ(r+1) = arg max
θ

Q(θ,θ(r))

= arg max
θ

E[log p(x0:T , y0:T | θ) | θ(r), y0:T ]. (3.5)

The calculation of expectation in Eq.(3.5) is difficult and time-consuming be-

cause of the high-dimensional variables involved. Therefore, the MCEM algo-

rithm is used to obtain the sequence

θ(r+1) = arg max
θ

QM(θ,θ(r))

= arg max
θ

1

M

M∑
j=1

log p(x
(j,r)
0:T , y0:T | θ), (3.6)

where {x(j,r)
0:T }Mj=1 are generated from the joint smoothing distribution p(x0:T |

y0:T ,θ
(r)). Hence, the methods introduced in Section 2.3 can be used to gener-

ate this sample. In Kim (2005), the MCEM algorithm with the FFBSi algorith-

m is discussed, and only the application of the PIMH algorithm is presented

here. Algorithm 7 is used to obtain the Monte Carlo sample at each iteration,

and obtain the sequence {θ(r)}. Two critical issues in the MCEM algorithm

with the PIMH algorithm in the NLSS models are discussed as follow.
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3.1.1 Stopping Rule

An critical issue in the MCEM algorithm is determining when to stop. The

estimation may be inaccurate if the procedure is stopped too early; while it is

time-consuming if too many iterations are implemented. Most of the stopping

rules for EM algorithm are based on the idea that the EM procedure is stopped

when the difference between the parameter values in the adjacent iterations is

small. One of the common stopping rules for the EM algorithm is

max
i

(
| θ(r+1)

i − θ(r)
i |

| θ(r)
i | +δ1

)
< δ2, (3.7)

where δ1 and δ2 are given constants. Searle et al. (1992) states that using δ1 =

0.001 and δ2 = 0.0001 are popular choices. However, the implementation of the

MCEM algorithm costs too much time if 0.0001 is used as the predetermined

value for δ2. The possible reason is that the Monte Carlo sample is used

to approximate the expectation, and the corresponding Monte Carlo error

increases the variability of estimators. Booth and Robert (1999) suggests that

a value of δ2 between 0.002 and 0.005 can be chosen when implementing the

MCEM algorithm. Because particle methods typically create Monte Carlo

errors, δ1 = 0.001 and δ2 = 0.005 are used in this thesis. To reduce the risk

of stopping prematurely, it is suggested in Booth and Robert (1999) that the

iteration procedure is not stopped until Eq.(3.7) is satisfied for three adjacent

iterations. This stopping scheme is also adopted.

3.1.2 Sample Size Issue

Another critical issue in the MCEM algorithm is how to choose the sample

size at each iteration. The algorithm is inefficient if it starts with a large

sample size because the values of the parameters are too divergent from the

true values. As the value of the parameter estimate becomes close to the true

value, a large sample size is required to achieve the estimation with a high
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level of reliability. Therefore, a good selection of sample size is to increase

the sample size when the parameters converge, which maintains the balance

between estimation accuracy and computational cost.

Levine and Casella (2001) proposes an automatic rule to determine whether

increasing the sample size should be increased at each iteration in the MCEM

algorithm with MCMC sampler. It would be difficult to obtain the variance

estimator of the central limit theorem in the MCMC setting. Renewal theory

and its corresponding central limit theory developed in Robert et al. (1999)

are used to construct the confidence region of the first derivative of QM(θ, θ(r)),

denoted as Q
(1)
M (θ, θ(r)). If Q

(1)
M (θ(r), θ(r−1)) lies in this confidence region, in-

crease the sample size in the next iteration. However, this criterion would not

provide hints about the convergence of the estimators. Further, to construct

rectangular confidence regions, the independence of parameters is imposed.

To circumvent these difficulties, the relative likelihood function introduced in

Chan and Ledolter (1995) is used to propose an automated rule to determine if

the sample size should be increased at each iteration in the MCEM algorithm

within MCMC setting. As in Levine and Casella (2001), renewal theory is used

to construct the confidence interval. However, unlike the central limit theorem

used in Levine and Casella (2001), the intermediate lemma derived in Robert

et al. (1999) is applied. Andrieu et al. (2010) proves that the PIMH algorith-

m is a standard independent Metropolis-Hastings (IMH) algorithm, which is

a special case of the MCMC method. Therefore, a new automated rule within

the PIMH framework is introduced.

Renewal theory is a subsampling scheme that causes the dependence among

subsamples to disappear asymptotically. Assume that the sample {xi0:T}Mi=1 is

given, renewal theory is used to obtain a subsample. First, a sequence of

{uk} is generated independently from a Possion distribution with parameter

λk, where λk = λkd with λ ≥ 1 and d > 0. The subsample index tk is then

calculated as tk = u1 + · · ·+ uk + k, and the sample size for the subsample is
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denoted by NM = sup{n : tn ≤ M}. Therefore the corresponding subsample

is {xtk0:T}
NM
k=1. For a given function h(x0:T ), according to Robert et al. (1999),

we have the following theorem.

Theorem 3.1 Suppose that the Markov chain {xi0:T} is ergodic and strongly

mixed with geometrically decaying mixing coefficients, and Eφ0:T |T | h(x0:T ) |2+δ<

∞ for some δ > 0, let

SNM
=

1√
NM v̂M

NM∑
k=1

[h(xtk0:T )− Eφ0:T |T (h(x0:T ))], (3.8)

where

v̂M =
1

M

M∑
i=1

[h(xi0:T )]2 −

(
1

M

M∑
i=1

h(xi0:T )

)2

, (3.9)

then SNM
converges weakly to a standard normal distribution.

The relative likelihood proposed in Chan and Ledolter (1995) is the ratio

of likelihoods between the successive iterations. In this setting, the relative

likelihood at the rth iteration is written as

RL(r) =
p(y0:T | θ(r))

p(y0:T | θ(r−1))
. (3.10)

The change of log-likelihoods can be expressed using the function of relative

likelihood

4l(θ(r),θ(r−1)) = log p(y0:T | θ(r))− log p(y0:T | θ(r−1)) = logRL(r). (3.11)

As the parameter values move closer together, the change of log-likelihoods

becomes closer to zero, and hence the relative likelihood tends to 1. Based

on this idea, confidence intervals of relative likelihood at each iteration are

constructed to determine whether the approximations between the successive

iterations are sufficiently close, and then to determine if the sample size should

be increased at the subsequent iteration.
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The relative likelihood at the rth iteration can be expressed as

RL(r) =
p(x0:T , y0:T | θ(r))

p(x0:T | y0:T ,θ(r))
· p(x0:T | y0:T ,θ

(r−1))

p(x0:T , y0:T | θ(r−1))

= Eθ(r−1)

[
p(x0:T , y0:T | θ(r))

p(x0:T , y0:T | θ(r−1))
| y0:T

]
, (3.12)

where the second equation is obtained by multiplying p(x0:T | y0:T ,θ
(r)) and

integrating out x0:T . Define the function

h(r)(x0:T ) =
p(x0:T , y0:T | θ(r))

p(x0:T , y0:T | θ(r−1))
, (3.13)

and estimate RL(r) and its corresponding variance as

R̂L
(r)

=
1

NM

NM∑
k=1

h(r)(xtk,r−1
0:T ) =

1

NM

NM∑
k=1

f(x
(tk,r−1)
0:T , y0:T | θ(r))

f(x
(tk,r−1)
0:T , y0:T | θ(r−1))

(3.14)

and

ˆvar[h(x0:T )](r) =
1

M

M∑
j=1

[h(xj,r−1
0:T )]2 −

(
1

M

M∑
j=1

h(xj,r−1
0:T )

)2

(3.15)

respectively, where {x(j,r−1)
0:T }Mj=1 is a sample from p(x0:T | y0:T ,θ

(r−1)) and

{x(tk,r−1)
0:T }NM

k=1 is the corresponding subsample generated using renewal theory.

According to Theorem 3.1, an approximate 100(1−α)% confidence interval of

relative likelihood at the rth iteration is constructed as[
R̂L

(r)
− z1−α/2

√
v̂ar[h(zT )](r)/NM , R̂L

(r)
+ z1−α/2

√
v̂ar[h(zT )](r)/NM

]
,

(3.16)

where z1−α/2 is the (1− α/2)th quantile of a standard normal distribution. If

this confidence interval contains 1, then the approximations at (r − 1)th and

rth are regarded as close. Increase the sample size at the (r + 1)th iteration.

The sample size is increased according to the formula M (r+1) = cM (r), and in

the simulation study and empirical analysis, α = 0.25 and c = 1.2 are chosen

as suggested in Booth and Robert (1999).
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3.2 Bayesian Analysis for Nonlinear State S-

pace Models

In this section, Bayesian analysis of type II maximum likelihood prior, which

is one of the parametric empirical Bayesian methods, is discussed. Similar to

other empirical Bayesian methods, robustness is an important advantage of

Bayesian estimators based on type II maximum likelihood prior.

In a Bayesian setting, if the continuous random variable X follows the

probability density p(x | θ), and the parameter θ has the prior density π(θ),

then the marginal density of X is

m(x | π) =

∫
θ

p(x | θ)π(θ) dθ. (3.17)

From the empirical Bayes perspective, the unknown prior density π can be

selected or estimated by observations. The marginal density m(x | π) can be

interpreted as the likelihood function of π. Similar to classical statistics, when

the data x is observed and m(x | π1) > m(x | π2), it is reasonable to conclude

that π1 is more plausible than π2. This is the basic idea of type II maximum

likelihood prior.

Definition 3.2 Suppose that Γ is a class of priors under consideration, and

π̂ satisfies (for the observed data x)

m(x | π̂) = sup
π∈Γ

m(x | π), (3.18)

then π̂ is called the type II maximum likelihood prior, or ML-II prior.

Specifically, Γ is considered as a class of known density functions π(θ | λ)

with unknown hyper-parameters λ. Therefore, the target becomes sup
λ∈Λ

m(x |

π(θ | λ)). Considering the inference for NLSS models in this framework, the

target is to find the hyper-parameters λ that maximize the marginal distribu-

tion, which can also be written as the “incomplete likelihood function” of λ
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as

arg max
λ

L(λ | y0:T ) = arg max
λ

p(y0:T | λ). (3.19)

However, this likelihood involves complex and high-dimensional integration in

the NLSS models, which cannot be dealt with directly. The EM algorithm

becomes a reasonable choice.

When estimating the hyper-parameters, both the latent variables x0:T and

parameters θ can be regarded as missing values. Hence the complete likelihood

function is

p(x0:T , y0:T ,θ | λ) = p(x0:T , y0:T | θ)π(θ | λ). (3.20)

According to the EM algorithm, a sequence {λ(r)} is obtained from a starting

point λ(0) by

λ(r+1) = arg max
λ

Q(λ,λ(r))

= arg max
λ

E[ln p(x0:T , y0:T ,θ | λ) | λ(r), y0:T ]

= arg max
λ
{E[ln p(x0:T , y0:T | θ) | λ(r), y0:T ] + E[lnπ(θ | λ) | λ(r), y0:T ]}

= arg max
λ

E[lnπ(θ | λ) | θ(r), y0:T ]. (3.21)

Because the expectation in Eq.(3.21) has no closed form, the EM algorithm is

replaced by the MCEM algorithm and the corresponding sequence is generated

by

λ(r+1) = arg max
λ

QM(λ,λ(r))

= arg max
λ

1

M

M∑
j=1

ln π(θ(j,r) | λ), (3.22)

where {θ(j,r)}Mj=1 are sampled from p(θ | λ(r), y0:T ). If the sample {x(j,r)
0:T ,θ

(j,r)}Mj=1

can be obtained from the joint distribution p(x0:T ,θ | λ(r), y0:T ), then the

corresponding value {θ(j,r)}Mj=1 is a sample from the marginal distribution

p(θ | λ(r), y0:T ). Hence, the problem is transformed into generating the sample

from p(x0:T ,θ | y0:T ,λ), which is a crux in Bayesian analysis. In the remainder
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of this section, applications of the resample-move algorithm and the particle

marginal Metropolis-Hastings (PMMH) sampler are discussed.

3.2.1 Resample-move Algorithm

As in Gilks and Berzuini (2001), a vector involving all unknown variables at

time t is constructed, denoted by

zt = (x0:t,θ). (3.23)

Therefore, the target distribution can be written as

πT (zT ) = p(zT | λ, y0:T ). (3.24)

In this case, the dimension of the vector zt increases as the process evolves. To

deal with this situation, Gilks and Berzuini (2001) adds an augmentation step

at the beginning of each iteration in the resample-move algorithm. In this

augmentation step, the sample for new-coming variable xt+1 is drawn from

p(xt+1 | xt,θ). For the resampling step, the importance weight is computed as

ω̃t+1 = ωt
πt+1(zt+1)

πt(zt)p(xt+1 | xt,θ)

= ωt
p(x0:t+1 | θ, y0:t+1)π(θ | λ)

p(x0:t | θ, y0:t)π(θ | λ)p(xt+1 | xt,θ)

∝ ωt
f(xt+1 | xt,θ)g(yt+1 | xt+1,θ)

p(xt+1 | xt,θ)
. (3.25)

Based on this modified algorithm, samples from {πt(zt)}Tt=0 are obtained se-

quentially. The entire procedure is presented in Algorithm 8. Using Algorithm

8, QM(λ,λ(r)) and λ(r+1) are obtained iteratively until the stopping rule

max
i

(
| λ(r+1)

i − λ(r)
i |

| λ(r)
i | +δ1

)
< δ2 (3.26)

is satisfied, where δ1 and δ2 are as given in Section 3.1.1.

For the issue of sample size, an automated rule proposed in Booth and

Robert (1999) is used to determine whether the Monte Carlo sample size should
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Algorithm 8 The Resample-move algorithm in NLSS models

Ensure: {zit, ωit}Ni=1 approximates πt(zt).
1: (Augmentation step:)
2: for i=1, . . . , N do
3: simulate x̄it+1 ∼ p(· | xit),
4: add this new component to the particles

z̄it+1 = (zit, x̄
i
t+1).

5: end for
6: (Resampling step:)
7: for i=1, . . . , N do
8: compute the unnormalized importance weights

ω̄it+1 ∝ ωit
f(xit+1 | xit,θi)g(yt+1 | xit+1,θ

i)

p(xit+1 | xit,θi)
;

9: end for
10: calculate the normalized weights

ω̃jt+1 =
ω̄jt+1∑N
m=1 ω̄

m
t+1

, j = 1, . . . , N ;

11: draw index I1
t+1, . . . , I

N
t+1 independently with the probability

P (It+1 = j) = ω̃jt+1, j = 1, . . . , N ;

12: set z̃it+1 = z̄
Iit+1

t+1 and ωit+1 = 1 for i = 1, . . . , N .
13: (Move step:)
14: renew the particles by sampling

zit+1 ∼ qt+1(·, z̃it+1),

where qt+1 is a transition kernel of stationary distribution πt+1.
15: Take {zit+1, ω

i
t+1}Ni=1 as an approximation for πt+1(zt+1).
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be increased at each iteration, since particles generated from the resample-

move algorithm are independent. Define

Q(1)(λ,λ′) =
∂

∂λ
Q(λ,λ′) (3.27)

Q(2)(λ,λ′) =
∂2

∂λ∂λT
Q(λ,λ′), (3.28)

and define Q
(1)
M (λ,λ′) and Q

(2)
M (λ,λ′) as their corresponding Monte Carlo es-

timators. Using Taylor expansion, it is shown in Booth and Robert (1999)

that

0 = Q
(1)
M (λ(r+1),λ(r))

≈ Q
(1)
M (λ∗(r+1),λ(r)) + (λ(r+1) − λ∗(r+1))TQ

(2)
M (λ∗(r+1),λ(r)), (3.29)

where λ∗(r+1) satisfies Q(1)(λ∗(r+1),λ(r)) = 0. From the central limit theorem

of samples generated by rejection sampling and IS, the Monte Carlo estimation

for the first derivative Q
(1)
M (λ∗(r+1),λ(r)) is approximately normal. Hence,

λ(r+1) | λ(r) a.∼ N(λ∗(r+1), σ2), (3.30)

where

σ2 = var(λ(r+1) | λ(r))

≈ Q
(2)
M (λ∗(r+1),λ(r))−1var{Q(1)

M (λ∗(r+1),λ(r))}Q(2)
M (λ∗(r+1),λ(r))−1.

The central limit theorem for particles generated using the resample-move algo-

rithm is proven in Chopin (2004), and Eq.(3.30) holds in this case. Becauseλ∗(r+1)

is unavailable, it is replaced by λ(r+1) when estimating var(λ(r+1) | λ(r)) and

the corresponding estimator is

v̂ar(λ(r+1) | λ(r)) = Q
(2)
M (λ(r+1),λ(r))−1v̂ar{Q(1)

M (λ∗(r+1),λ(r))}Q(2)
M (λ(r+1),λ(r))−1,

where v̂ar{Q(1)
M (λ∗(r+1),λ(r))} is estimated by

1

M2

M∑
j=1

(
ω

(j,r)
T

∂

∂λ
ln p(x

(j,r)
0:T , y0:T ,θ

(j,r) | λ(r+1))

)(
ω

(j,r)
T

∂

∂λ
ln p(x

(j,r)
0:T , y0:T ,θ

(j,r) | λ(r+1))

)T
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and {(x(j,r)
0:T ,θ

(j,r)), ω
(j,r)
T } are the weighted samples obtained from p(x0:T ,θ |

λ(r), y0:T ) using the resample-move algorithm. Therefore, at the (r+ 1)th iter-

ation, an approximate 100(1−α)% confidence region of λ∗(r+1) is constructed

by

{λ∗(r+1) : (λ(r+1) − λ∗(r+1))T v̂ar(λ(r+1) | λ(r))−1(λ(r+1) − λ∗(r+1)) ≤ χ2
α(p)},

(3.31)

where it is assumed that the dimension of the hyper-parameters λ is p, and

χ2
α(p) is the (1−α)th quantile of χ2 with p degrees of freedom. If λ(r) falls into

this region, the difference between the values in the adjacent iterations can be

covered by Monte Carlo error, and the sample size M in the next iteration is

increased. Otherwise, the sample size remains unchanged.

3.2.2 Particle Marginal Metropolis-Hastings Sampler

A special case of the PMCMC method, namely, the PIMH algorithm was in-

troduced in Section 2.3.2. However, the target distribution becomes p(x0:T ,θ |

y0:T ,λ) which depends on particle smoothing and parameter estimation. To

deal with this situation, a more general algorithm is required. To this end, the

PMMH sampler is a viable alternative. For the ordinary Metropolis-Hastings

(MH) algorithm, if the proposal distribution is

q(θ∗, x∗0:T | θ, x0:T ) = q(θ∗ | θ)p(x∗0:T | θ∗, y0:T ), (3.32)

then the candidate point (θ∗, x∗0:T ) is accepted with the probability equaling

to min{1, R}, where

R =
p(x∗0:T ,θ

∗ | y0:T ,λ, )q(θ, x0:T | θ∗, x∗0:T )

p(x0:T ,θ | y0:T ,λ)q(θ∗, x∗0:T | θ, y0:T )

=
p(x∗0:T | θ∗, y0:T ,λ)p(θ∗ | λ, y0:T )q(θ | θ∗)p(x0:T | θ, y0:T )

p(x0:T | θ, y0:T ,λ)p(θ | λ, y0:T )q(θ∗ | θ)p(x∗0:T | θ∗, y0:T )

=
pθ∗(y0:T )π(θ∗ | λ)q(θ | θ∗)
pθ(y0:T )π(θ | λ)q(θ∗ | θ)

. (3.33)
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By the PCMCM method, an auxiliary variable WzT is introduced and de-

fined by

WzT =
p̂θ(y0:T )

pθ(y0:T )
. (3.34)

Let the distribution of WzT be QzT (·). Then the joint distribution of zT and

WzT is given by

p(zT , wzT ) = p(x0:T ,θ | y0:T ,λ)QzT (wzT )wzT . (3.35)

Because E[WzT ] = 1, the marginal distribution of zT is the original target

distribution p(x0:T ,θ | y0:T ,λ). If a sample is drawn from the joint distribution

in Eq.(3.35), by discarding the auxiliary variable wzT , a sample from the target

distribution p(x0:T ,θ | y0:T ,λ) is generated.

When the MH algorithm is used to deal with the joint distribution Eq.(3.35),

the proposal distribution is

q(z∗T , w
∗
zT
| zT , wzT ) = q(θ∗, x∗0:T | θ, x0:T )Qz∗T (w∗zT ), (3.36)

It is derived in Douc et al. (2014) that the corresponding ratio of this MH

algorithm becomes R
w∗zT
wzT

. Substituting p̂θ(y0:T )
pθ(y0:T )

for wzT , a new ratio is obtained

as

R′ = R
w∗zT
wzT

=
p̂θ∗(y0:T )π(θ∗ | λ)q(θ | θ∗)
p̂θ(y0:T )π(θ | λ)q(θ∗ | θ)

. (3.37)

According to Eq.(3.37), it is not necessary to generate wzT . Instead, it only

needs to obtain an unbiased estimator p̂θ(y0:T ), which can be achieved using

the SMC method introduced in Section 2.3.2. Algorithm 9 summarizes the

application of the PMMH algorithm in this case.

We obtain QM(λ,λ(r)) from particles generated by Algorithm 9, and λ(r+1)

is obtained iteratively. The same stopping rule in Eq.(3.26) is used. Because

the sample drawn by the PMMH algorithm is a Markov chain, the same cri-

terion provided in Section 3.1 is used to decide if the sample size should be

increased at each iteration. The confidence interval of relative likelihood at



www.manaraa.com

Chapter 3 Inference for Nonlinear State Space Models 34

Algorithm 9 The PMMH algorithm in NLSS models

1: for k=1 do
2: set initial value θ(1) arbitrarily;

3: run a SMC algorithm targeting φ
θ(1)
0:T |T (x0:T ), obtain the correspond-

ing weighted particles {xj0:T , ω
j
T}Nj=1, and compute p̂θ(1)(y1:T ) according

Eq.(2.23);
4: draw index I with the probability P (I = j) = ω̃jT , j = 1, . . . , N , where

ω̃T is the normalized weight;
5: set x0:T (1) = xI0:T .
6: end for
7: for k=2, . . . , M do
8: simulate θ∗ ∼ q(· | θ(k − 1))
9: run a SMC algorithm targeting φθ

∗

0:T |T (x0:T ), obtain the corresponding

weighted particles {xj0:T , ω
j
T}Nj=1, and compute p̂θ∗(y1:T );

10: calculate the acceptance rate

R̃ = min

{
1,

p̂θ∗(y0:T )π(θ∗ | λ)q(θ(k − 1) | θ∗)
p̂θ(k−1)(y0:T )π(θ(k − 1) | λ)q(θ∗ | θ(k − 1))

}
;

11: draw U uniformly on [0, 1];
12: if U ≤ R̃, draw index I with the probability P (I = j) = ω̃jT , j =

1, . . . , N , set x0:T (k) = xI0:T , θ(k) = θ∗ and p̂θ(k)(y1:T ) = p̂θ∗(y1:T );
otherwise set x0:T (k) = x0:T (k − 1), θ(k) = θ(k − 1) and p̂θ(k)(y1:T ) =
p̂θ(k−1)(y1:T ).

13: end for
14: Burn the first bM/cc steps, take {x0:T (k),θ(k)}Mk=bM/cc+1 as an approxi-

mation for p(x0:T ,θ | y0:T ,λ), where c is a positive constant.
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each iteration is the most critical element to devise this criterion. The relative

likelihood at the rth iteration can be expressed as

RL(r) = Eλ(r−1)

[
f(x0:T , y0:T ,θ | λ(r))

f(x0:T , y0:T ,θ | λ(r−1))

∣∣∣∣y0:T

]
. (3.38)

Define the function

h(r)(zT ) =
f(zT , y0:T | λ(r))

f(zT , y0:T , | λ(r−1))
, (3.39)

then the estimator of varλ(r−1) [h(zT ) | y0:T ] is

v̂ar[h(zT )](r) =
1

M

M∑
j=1

[h(z
(j,r−1)
T )]2 −

[
1

M

M∑
j=1

h(z
(j,r−1)
T )

]2

, (3.40)

where {z(j,r−1)
T = (x

(j,r−1)
0:T ,θ(j,r−1))}Mj=1 is the sample drawn from p(x0:T ,θ |

λ(r−1), y0:T ) by the PMMH algorithm. The sequence {tk}NM
k=1 is generated using

the same method as in Section 3.1. The estimator of the relative likelihood at

the rth iteration can be written as

R̂L
(r)

=
1

NM

NM∑
k=1

f(x
(tk,r−1)
0:T , y0:T ,θ

(tk,r−1) | λ(r))

f(x
(tk,r−1)
0:T , y0:T ,θ(tk,r−1) | λ(r−1))

=
1

NM

NM∑
k=1

f(x
(tk,r−1)
0:T , y0:T | θ(tk,r−1))π(θ(tk,r−1) | λ(r))

f(x
(tk,r−1)
0:T , y0:T | θ(tk,r−1))π(θ(tk,r−1) | λ(r−1))

=
1

NM

NM∑
k=1

π(θ(tk,r−1) | λ(r))

π(θ(tk,r−1) | λ(r−1))
, (3.41)

where {(x(tk,r−1)
0:T ,θ(tk,r−1))}NM

k=1 is a subsample of {(x(j,r−1)
0:T ,θ(j,r−1))}Mj=1. An

approximate 100(1− α)% confidence interval of RL(r) then becomes[
R̂L

(r)
− z1−α/2

√
v̂ar[h(zT )](r)/NM , R̂L

(r)
+ z1−α/2

√
v̂ar[h(zT )](r)/NM

]
.

(3.42)

If this confidence interval includes 1, then increase the sample size in the next

iteration. Otherwise, the sample size remains unchanged.
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Special Case: Inference for

Stochastic Volatility Model

The stochastic volatility (SV) model is a popular model used in time series

analysis. In the canonical discrete-time SV model, the return Yt depends on

the corresponding unobserved volatility Xt, and the sequence of volatilities is

modeled using an AR process. The entire model can be formulated as the

following two equations:

Xt = ρXt−1 + ηt, (4.1)

Yt = βexp(Xt/2)εt, (4.2)

where εt
i.i.d.∼ N(0, 1), ηt

i.i.d.∼ N(0, τ). Herein, we assume that the initial value

x0 be a constant for simplicity. In this model, the transition kernel is

(Xt | Xt−1 = xt−1) ∼ N(ρxt−1, τ) (4.3)

and the distribution of the observation process is

(Yt | Xt = xt) ∼ N [0, β2exp(yt)] (4.4)

In this chapter, the methodology proposed in Chapter 3 is used to conduct

inference for the SV model.

36
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4.1 Maximum Likelihood Estimation for Stochas-

tic Volatility Model

In the SV model, the complete likelihood is

p(x0:T , y0:T | θ) = (2πτ)−T/2
(
2πβ2

)−T/2
exp

{
−

T∑
t=1

[
1

2τ
(xt − ρxt−1)2 +

xt
2

+
y2
t

2β2exp(xt)

]}
,

(4.5)

where θ = (ρ, τ, β2)T , and the joint smoothing distribution p(x0:T | y0:T ,θ) is

proportional to this likelihood function p(x0:T , y0:T | θ). If the sample {xi0:T}Mi=1

is drawn from the joint distribution, then from a starting point θ(0), the se-

quence of parameter {θ(r)} can be obtained using Eq.(3.6). In the following

sections, sample generation, log-likelihood maximization and several other is-

sues with the setting of Monte Carlo MLE for the SV model will be discussed.

4.1.1 Sample Generation

We now show how to generate {xi0:T}Mi=1 from p(x0:T | y0:T ,θ) by the PIMH

algorithm. Running a SMC algorithm that target p(x0:T | y0:T ,θ) is an im-

portant step of implementing the PIMH algorithm. The APF introduced in

Section 2.2.4 is a useful tool in the SMC methodology, thus we choose the APF

in the SMC step. Implementation of the APF in the SV model is discussed in

Pitt and Shephard (1999) in which the proposal distribution is introduced as

q2(xt+1 | xkt ) = N

[
ρxkt +

τ

2

{
y2
t+1

β2
exp(−ρxkt )− 1

}
, τ

]
. (4.6)

However, this proposal distribution becomes difficult to simulate when the

observations y0:t consist of large value outliers. Because yt+1 has a quadratic

effect in the mean term of the proposal distribution of the latent variable xt+1,

large values of yt+1 make the mean term have a large drift from ρxkt . As a

result, the state variables x0:T are overestimated using this algorithm, which
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results in a bad estimator for τ . Hence, within the framework of the APF,

another proposal distribution proposed in Douc et al. (2009) is used.

Assume that the particle weights at time t are all equal to 1. Then the

first-stage unnormalized weights are

λ̃kt+1 = σ̄t(x
k
t )g[yt+1 | m̄t(x

k
t )]f [m̄t(x

k
t ) | xkt ], (4.7)

for k = 1, . . . , N , where m̄t(x
k
t ) is the mode of log[g(yt+1 | xt+1)f(xt+1 | xkt )]

with respect to xt+1 and hence is the unique solution of

−1

τ
(x− ρxkt ) +

y2
t+1

2β2
exp(−x)− 1

2
= 0, (4.8)

and

σ̄2
t (x

k
t ) =

{
1

τ
+
y2
t+1

2β2
exp[−m̄t(x

k
t )]

}−1

. (4.9)

Define the function

fkt+1(x) = −1

τ
(x− ρxkt ) +

y2
t+1

2β2
exp(−x)− 1

2
, (4.10)

since the first derivative of fkt+1(x)

fkt+1

′
(x) = −

y2
t+1

2β2
exp(−x)− 1

τ
< 0, (4.11)

the Newton-Raphson method can be used to solve Eq.(4.8). The proposal

distribution becomes

q2(xt+1 | xkt ) = N
[
m̄t(x

k
t ), σ̄

2
t (x

k
t )
]
, (4.12)

and the second-stage unnormalized weights become

ω̄t+1 =
g(yt+1 | xt+1)f(xt+1 | xkt )

σ̄t(xkt )g[yt+1 | m̄t(xkt )]f [m̄t(xkt ) | xkt ]pN [xt+1; m̄t(xkt ), σ̄
2
t (x

k
t )]
, (4.13)

where pN(·;µ, σ2) is the density function of a normal distribution with mean µ

and variance σ2. Since the target distribution is the joint smoothing distribu-

tion rather than the filtering distribution, the APF algorithm is different from

Algorithm 4, and this new method is given in Algorithm 10.
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Algorithm 10 The auxiliary particle filter in the SV model

Ensure: {x̃i0:t}Ni=1 approximates φ0:t|t(x0:t).

1: Compute the first-stage unnormalized weights λ̃kt+1 by Eq.(4.7), k =
1, . . . , N .

2: for i=1, . . . , N do
3: draw index ki from the set {1, . . . , N} with respect to the probability

P (ki = j) =
λ̃jt+1∑N
m=1 λ̃

m
t+1

, j = 1, . . . , N ;

4: sample x̃it+1 ∼ q2(· | xkit );
5: calculate the second-stage unnormalized weights ω̄it+1 by Eq.(4.13).
6: end for
7: Compute the second-stage normalized weights

ω̃jt+1 =
ω̄jt+1∑N
m=1 ω̄

m
t+1

, j = 1, . . . , N ;

8: draw index I1
t+1, . . . , I

N
t+1 independently with the probability

P (It+1 = j) = ω̃t+1, j = 1, . . . , N ;

9: set xi0:t+1 = x̃
Iit+1

0:t+1 for i = 1, . . . , N .
10: Take {xi0:t+1}Ni=1 as an approximation for φ0:t+1|t+1(x0:t+1).
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Another key issue in the implementation of the PIMH algorithm is to obtain

the estimator of the likelihood pθ(y0:T ). The estimator in Eq.(2.23) is based on

the simplest SMC method (i.e. SISR algorithm). However, in the framework of

the APF method, there are two weights. Hence, Pitt and Silva (2012) proposes

an unbiased estimator of pθ(yi | y0:i−1) as

p̂θ(yi | y0:i−1) =

{
N∑
k=1

ω̄it+1

N

}{
N∑
k=1

λ̃kt+1

}
. (4.14)

With the above APF algorithm and the estimator of the likelihood, we can

use the PIMH method in Algorithm 7 to estimate the MLE for the SV model.

4.1.2 Maximization Procedure

From Eq.(4.5), it is seen that the parameter β2 is independent of the other two

parameters ρ and τ , and these two groups of parameters can be considered

separately. If {xi0:T}Mi=1 is generated from p(x0:T | y0:T ,θ
′), then the estimation

of parameters is obtained by

(ρ, τ) = arg max
ρ,τ

1

M

M∑
i=1

[
−T

2
log(τ)− 1

2τ

T∑
t=1

(xit − ρxit−1)2

]
(4.15)

and

β2 = arg max
β2

1

M

M∑
i=1

[
−T

2
log(β2)−

T∑
t=1

y2
t

2β2exp(xit)

]
. (4.16)

Set the first derivative of the target functions equal to zero and solve the

equations, we have

ρ̂ =

∑T
t=1

∑M
i=1 x

i
tx
i
t−1∑T

t=1

∑M
i=1(xit−1)2

=

∑T
t=1(x̂t−1x̂t + P̂t−1,t)∑T
t=1(x̂2

t−1 + P̂t−1)
, (4.17)

τ̂ =
1

MT

T∑
t=1

M∑
i=1

(xit − ρ̂xit−1)2

=
1

T


T∑
t=1

(x̂2
t + P̂t)−

[∑T
t=1(x̂t−1x̂t + P̂t−1,t)

]2

∑T
t=1(x̂2

t−1 + P̂t−1)

 , (4.18)
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and

β̂2 =
1

MT

T∑
t=1

M∑
i=1

y2
t

exp(xit)
, (4.19)

where x̂t = 1
M

∑M
i=1 x

i
t, P̂t = 1

M

∑M
i=1(xit − x̂t)

2 and P̂t−1,t = 1
M

∑M
i=1(xit−1 −

x̂t−1)(xit − x̂t) for t = 1, . . . , T .

4.1.3 Other Issues

A disadvantage of the EM algorithm is its slow convergence rate, thus it is

necessary to find a good starting value. As in Kim (2005), the moment method

can be used to calculate the initial value of parameters. For parameters ρ and

τ , we use similar starting points as used Kim (2005). Take vt = log(y2
t ), then

ρ(0) = sign

[ ∑T
t=3(vt − v̄)(vt−2 − v̄)∑T
t=3(vt−1 − v̄)(vt−2 − v̄)

]
·min

[ ∑T
t=3(vt − v̄)(vt−2 − v̄)∑T
t=3(vt−1 − v̄)(vt−2 − v̄)

, 0.99

]
(4.20)

and

τ (0) = max

{
1

n

T∑
t=2

[
(vt − v̄)− ρ(0)(vt−1 − v̄)

]2 − σ̂2[1 + (ρ(0))2], 0.01

}
(4.21)

where v̄ is the average of v0:T and σ̂2 is set as 5, which approximates the vari-

ance of the log-χ2 distrbution. The term 0.99 is included in Eq.(4.20) to ensure

the stationarity of the process {xt}, and the term 0.01 in Eq.(4.21) ensures the

positive variance. For parameter β2, we square and take the logarithm of

Eq.(4.2) to get

vt = log(β2) + xt + log(ε2t ). (4.22)

By taking the expectation of Eq.(4.22), we have

log(β2) = E(vt)− E(xt)− E[log(ε2t )]. (4.23)

Due to the stationarity, E(xt) = 0, the initial value of β2 is set as

(β2)(0) = exp(v̄ + 1.3), (4.24)
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where −1.3 approximates the expectation of of the log-χ2 distrbution.

The stopping rule and the sample size issue in this case are dealt with

in Section 3.1.1 and Section 3.1.2 respectively. The MCEM algorithm for

the MLE of the SV model is given in Algorithm 11, and the proof of the

convergence of this algorithm is presented in Appendix A.1.

4.2 Bayesian Analysis for the Stochastic Volatil-

ity Model

We now discuss the application of Bayesian analysis with type II maximum

likelihood prior to the SV model. In the setting of priors, it is assumed that

the priors of the parameters are independent. Because ρ is supposed to lie

in (−1, 1) to ensure the stationarity of the sequence X0:T , we take ρ to be

uniformly distributed in the interval (−1, 1), denoted as ρ ∼ U(−1, 1). For

the parameters τ and β, the conjugate priors are chosen, which are inverse

Gamma distributions, and denoted as

τ ∼ IG(α0, γ), (4.25)

and

β2 ∼ IG(µ0, δ) (4.26)

respectively, where the shape parameters α0 and µ0 are given, and the scale

parameters γ and δ are hyper-parameters. If the maximization involves un-

known parameters α0 and µ0, further numerical procedure are needed and it

becomes more difficult and time-consuming to achieve convergence. Only γ

and δ are unknown in this study.

In this case, the goal is to find the hyper-parameters γ and δ that maximize

the marginal distribution, meaning

arg max
γ,δ

L(γ, δ | y0:T ) = arg max
γ,δ

p(y0:T | γ, δ). (4.27)
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Algorithm 11 The MCEM algorithm for MLE of the SV model

Ensure: The initial value θ(0) = (ρ(0), τ (0), (β2)(0))T is obtained by Eq.(4.20),
Eq.(4.21) and Eq.(4.24) respectively; and set r = 0 and M (0) = C0, where
C0 is a positive integer.

1: repeat
2: for k=1 . . . , M (r) do
3: run Algorithm 10 targeting φθ

(r)

0:T |T (x0:T ), obtain the corresponding

weighted particles {xj0:T , ω
j
T}Nj=1, and compute p̂θ(r)(y1:T )∗ by Eq.(2.23)

with p̂θ(yi | y0:i−1) estimated by Eq.(4.14);
4: calculate the acceptance rate

r =

{
1 for k = 1

min{1, p̂
θ(r)

(y1:T )∗

p̂
θ(r)

(y1:T )(k−1)
} for k = 2, . . . ,M (r) ;

5: draw U uniformly on [0, 1];
6: if U ≤ r, draw index I with the probability P (I = j) = ω̃jT , j =

1, . . . , N , where ω̃T is the normalized weight, set x0:T (k) = xI0:T

and p̂θ(y1:T )(k) = p̂θ(y1:T )∗; otherwise set x0:T (k) = x0:T (k − 1) and
p̂θ(y1:T )(k) = p̂θ(y1:T )(k − 1).

7: end for
8: Burn the first bM (r)/cc steps, take {x0:T (k)}M(r)

k=bM(r)/cc+1
as an approxi-

mation for φθ
(r)

0:T |T (x0:T ), where c is a positive constant.

9: Calculate the estimator θ(r+1) = (ρ(r+1), τ (r+1), (β2)(r+1))T by Eq.(4.17)-
Eq.(4.19) respectively;

10: set r = r + 1;
11: calculate the estimator of variance of relative likelihood by Eq.(3.15) ;

12: obtain the subsample {x0:T (tk)}
N

M(r)

k=1 by renewal theory in Section 3.1.2,
and then calculate the estimator of RL(r) by Eq.(3.14);

13: construct the 100(1− α)% confidence region of RL(r) by Eq.(3.16);
14: if this interval contains 1, then M (r) = cM (r−1) where c > 1, otherwise

M (r) = M (r−1).
15: until satisfying Eq.(3.7) for three adjacent iterations.
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The MCEM algorithm is used to deal with this problem. Because the priors

of τ and β2 are independent, according to Eq.(3.22), the sequences {γ(r)} and

{δ(r)} are generated by

γ(r+1) = arg max
γ

1

M

M∑
j=1

log

[
γα0

Γ(α0)
(τ (j,r))−α0−1exp

(
− γ

τ (j,r)

)]

= arg max
γ

1

M

[
Mα0 log(γ)− (α0 + 1)

M∑
j=1

log(τ (j,r))−
M∑
j=1

γ

τ (j,r)

]

= Mα0/

M∑
j=1

1

τ (j,r)
(4.28)

and

δ(r+1) = arg max
δ

1

M

M∑
j=1

log

[
δµ0

Γ(µ0)
((β2)(j,r))−(δ0+1)exp

(
− δ

(β2)(j,r))

)]

= arg max
δ

1

M

[
Mµ0 log(δ)− (µ0 + 1)

M∑
j=1

log((β2)(j,r))−
M∑
j=1

δ

(β2)(j,r)

]

= Mµ0/
M∑
j=1

1

(β2)(j,r)
, (4.29)

where {τ (j,r), (β2)(j,r)}Mj=1 are sampled from p(τ, β2 | γ(r), δ(r), y0:T ). To obtain

this sample, draw particles {x(j,r)
0:T , τ

(j,r), (β2)(j,r)}Mj=1 from the joint distribu-

tion p(x0:T , τ, β
2 | γ(r), δ(r), y0:T ). In the remaining section, the application

of the resample-move algorithm and the PMMH algorithm in this setting are

presented.

4.2.1 Resample-move Algorithm in the Stochastic Volatil-

ity Model

In this case, the vector including all unknown variables at time t is denoted by

zt = (x0:t, ρ, τ, β
2), (4.30)

and the target distribution is

πt(zt) = p(zt | γ, δ, y0:t). (4.31)
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For the resample-move algorithm, the intuitive transition distribution f(xt+1 |

xt, ρ, τ) is chosen to draw the new-coming variable xt+1 in the augmentation

step. Then in the resampling step, the importance weight is

ω̃t+1 ∝ ωtg(yt+1 | xt+1, β
2). (4.32)

In the MCMC step, Gibbs sampling and the Metropolis-Hastings (M-H) algo-

rithm are combined to perform a one-step move, and Algorithm 12 presents

the corresponding procedure.

The resample-move algorithm is used to obtain the sample {x(j,r)
0:T , ρ

j,r, τ j,r, (β2)(j,r)}Mj=1

from the joint distribution p(zT | γ(r), δ(r), y0:T ) at each iteration. Then the

sample can be used to obtain γ(r) and δ(r), as well as to construct the confidence

region of (γ∗(r+1), δ∗(r+1)). Define λ = (γ, δ)T , then

Q
(2)
M (λ(r+1),λ(r)) =

 − α0

(γ(r+1))2
0

0 − µ0
(δ(r+1))2

 (4.33)

and v̂ar{Q(1)
M (λ∗(r+1),λ(r))} is given by

1

M2

M∑
j=1

 ( α0

γ(r+1) − 1
τ (j,r)

)2 ( α0

γ(r+1) − 1
τ (j,r)

)( µ0
δ(r+1) − 1

(β2)(j,r)
)

( α0

γ(r+1) − 1
τ (j,r)

)( µ0
δ(r+1) − 1

(β2)(j,r)
) ( µ0

δ(r+1) − 1
(β2)(j,r)

)2

 .

Therefore, the estimator of var(λ(r+1) | λ(r)) is calculated by

v̂ar(λ(r+1) | λ(r)) = Q
(2)
M (λ(r+1),λ(r))−1v̂ar{Q(1)

M (λ∗(r+1),λ(r))}Q(2)
M (λ(r+1),λ(r))−1,

and an approximate 100(1 − α)% confidence region of λ∗(r+1) at the (r +

1)th iteration is then constructed using Eq.(3.31), and whether to increase the

sample size at next iteration is determined according to this confidence region.

The entire procedure is presented in Algorithm 13.

4.2.2 Particle Marginal Metropolis-Hastings Sampler in

the Stochastic Volatility Model

Two settings of the PMMH sampler in the SV model are presented. The

first setting is the proposal distributions of unknown parameters ρ, τ and
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Algorithm 12 MCMC step in the Resample-move algorithm for the SV model

Ensure: {z̃ij}Ni=1 approximates πj(zj | γ, δ, y0:j) by SIS.
1: for i=1, . . . , N do
2: simulate

ρi ∼ N

(∑j
t=1 x̃

i
tx̃
i
t−1∑j

t=1(x̃it−1)2
,

τ̃ i∑j
t=1(x̃t−1)2

)
within (−1, 1);

3: simulate

τ i ∼ IG

(
T

2
+ α0, γ +

1

2

j∑
t=1

(x̃it − ρix̃it−1)2

)
;

4: simulate

(β2)i ∼ IG

(
T

2
+ µ0, δ +

1

2

j∑
t=1

y2
t

exp(x̃it)

)
;

5: for t=1, . . . , j-1 do
6: simulate

x̄it ∼ N

(
ρi

1 + (ρi)2
(xit−1 + x̃it+1),

τ i

1 + (ρi)2

)
;

7: calculate the acceptance rate

R = min

{
1,
g(yt | x̄it, (β2)i)

g(yt | x̃it, (β2)i)

}
;

8: draw U uniformly on [0, 1];
9: if U ≤ R, set xit = x̄it ; otherwise set xit = x̃it;

10: end for
11: simulate

x̄ij ∼ N
(
ρixij−1, τ

i
)

;

12: calculate acceptance rate

R = min

{
1,
g(yj | x̄iT , (β2)i)

g(yj | x̃iT , (β2)i)

}
;

13: draw U uniformly on [0, 1];
14: if U ≤ R, set xij = x̄ij ; otherwise set xij = x̃ij;
15: end for
16: take {zij}Ni=1 to approximate πj(zj | γ, δ, y0:j).
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Algorithm 13 The MCEM alorithm with the resample-move algorithm in the
SV model

Ensure: the initial value is given by (γ(0), δ(0))T , set r = 0 and M (0) = C0,
where C0 is a positive integer.

1: repeat
2: for i=1, . . . , N do
3: simulate ρ̄(i,r) ∼ U [−1, 1], where U is uniform distribution;
4: simulate

τ̄ (i,r) ∼ IG(α0, γ
(r));

5: simulate
(β̄2)(i,r) ∼ IG(µ0, δ

(r));

6: simulate
x̄

(i,r)
1 ∼ f(· | x0, ρ̄

(i,r), τ̄ (i,r));

7: set z̄
(i,r)
1 = (ρ̄(i,r), τ̄ (i,r), (β̄2)(i,r), x̄

(i,r)
1 );

8: end for
9: get {z̃(i,r)

1 , ω
(i,r)
1 }Ni=1 by resample step in Algorithm 8;

10: get {z(i,r)
1 }Ni=1 by Algorithm 12;

11: for t=2, . . . , T do
12: get {z(i,r)

t , ω
(i,r)
t }Ni=1 by Algorithm 8, where the MCMC step is con-

ducted by Algorithm 12;
13: end for
14: calculate the estimator

γ(r+1) = M (r)α0/
M(r)∑
j=1

1

τ (j,r)
;

15: calculate the estimator

δ(r+1) = M (r)µ0/
M(r)∑
j=1

1

(β2)(j,r)
;

16: construct an approximate 100(1 − α)% confidence region of λ∗(r+1) by
Eq.(3.31);

17: if (γ(r), δ(r)) falls into this region, then M (r+1) = cM (r) where c > 1,
otherwise M (r+1) = M (r) ;

18: set r = r + 1.
19: until satisfying Eq.(3.26) for three adjacent iterations.
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β2. The simplest way is to select the prior distributions to be the proposal

distributions, which draws the candidate point independently of the previous

point. Therefore, the ratio of this algorithm becomes

R′ =
p̂θ∗(y0:T )π(θ∗ | λ)π(θ | λ)

p̂θ(y0:T )π(θ | λ)π(θ∗ | λ)

=
p̂θ∗(y0:T )

p̂θ(y0:T )
, (4.34)

which is the same as that of the PIMH algorithm. The other setting is to

estimate the relative likelihood and its corresponding variance at each iteration.

Again, the subsample generated using renewal theory is used to estimate the

relative likelihood at the rth iteration

R̂L
(r)

=
1

m

m∑
k=1

π(θ(tk,r−1) | λ(r))

π(θ(tk,r−1) | λ(r−1))

=
1

m

m∑
k=1

pIG(τ (tk,r−1);α0, γ
(r))pIG((β2)(tk,r−1);µ0, δ

(r))

pIG(τ (tk,r−1);α0, γ(r−1))pIG((β2)(tk,r−1);µ0, δ(r−1))
,(4.35)

where pIG(·; a, b) is the density function of inverse gamma distribution with

shape parameter a and scale parameter b. Now the function

h(r)(zT ) =
f(zT , y0:T | λ(r))

f(zT , y0:T , | λ(r−1))

=
pIG(τ ;α0, γ

(r))pIG(β2;µ0, δ
(r))

pIG(τ ;α0, γ(r−1))pIG(β2;µ0, δ(r−1))
; (4.36)

can be substituted into Eq.(3.40) to obtain the estimator of variance of relative

likelihood at the rth iteration. Then a confidence interval of relative likelihood

at this iteration is constructed by Eq.(3.42), and whether to increase the sample

size at the next iteration is determined based on this confidence interval. The

whole procedure is presented in Algorithm 14, and the proof of the convergence

of this algorithm is presented in Appendix A.2.
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Algorithm 14 The MCEM algorithm with the PMMH algorithm in the SV
model

Ensure: The initial value is given by λ(0) = (γ(0), δ(0))T , and set r = 0 and
M (0) = C0, where C0 is a positive integer.

1: repeat
2: for k=1, . . . , M (r) do
3: simulate ρ∗ ∼ U [−1, 1], where U is uniform distribution; simulate

τ ∗ ∼ IG(α0, γ
(r)) and (β2)∗ ∼ IG(µ0, δ

(r)); set θ∗ = (ρ∗, τ ∗, (β2)∗);
4: run Algorithm 10 targeting φθ

∗

0:T |T (x0:T ), obtain the corresponding

weighted particles {xj0:T , ω
j
T}Nj=1, and compute p̂θ∗(y1:T )∗ by Eq.(2.23)

with p̂θ(yi | y0:i−1) estimated by Eq.(4.14);
5: calculate the acceptance rate

R̃ =

{
1 for k = 1

min
{

1, p̂θ∗ (y0:T )
p̂θ(k−1)(y0:T )

}
for k = 2, . . . ,M (r) ;

6: draw U uniformly on [0, 1];
7: if U ≤ R̃, draw index I with the probability P (I = j) = ω̃jT , j =

1, . . . , N , set x0:T (k) = xI0:T , θ(k) = θ∗ and p̂θ(k)(y1:T ) = p̂θ∗(y1:T );
otherwise set x0:T (k) = x0:T (k− 1), θ(k) = θ(k− 1) and p̂θ(k)(y1:T ) =
p̂θ(k−1)(y1:T ).

8: end for
9: Burn the first bM (r)/cc steps, take {x0:t(k),θ(k)}M(r)

k=bM(r)/cc+1
as an ap-

proximation for p(x0:T ,θ | y0:T ,λ
(r)), where c is a positive constant,

specially, set {τ (j,r), (β2)(j,r)}Mj=1 = {τ(k), β2(k)}M(r)

k=bM(r)/cc+1
;

10: calculate the estimator

γ(r+1) = Mα0/

M∑
j=1

1

τ (j,r)
;

11: calculate the estimator

δ(r+1) = Mµ0/
M∑
j=1

1

(β2)(j,r)
;

12: set r = r + 1;
13: calculate the estimator of variance of relative likelihood v̂ar[h(zT )](r);

14: obtain the subsample {θ(tk)}
N

M(r)

k=1 by renewal theory in Section 3.1.2,
and then calculate the estimator of RL(r) by Eq.(4.35);

15: construct an approximate 100(1 − α)% confidence region of RL(r) by
Eq.(3.42);

16: if this interval contains 1, then M (r) = cM (r−1) where c > 1, otherwise
M (r) = M (r−1).

17: until satisfying Eq.(3.26) for three adjacent iterations.
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Chapter 5

Simulation and Empirical Study

Based on the methodology developed in Chapter 4, the simulation and empir-

ical study are presented in this chapter. Section 5.1 presents the results of the

simulation, and Section 5.2 shows the performance of the proposed methods

in modeling RMB/dollar exchange rates.

5.1 Simulation Study

In this section, the proposed methods in Chapter 4 are applied to the simulated

data sets. Section 5.1.1 presents and compares the performances of three pro-

posed methods for parameter estimation. Comparison of the performances of

the MCEM algorithm with increasing sample size by the proposed automated

rules and predetermined sample size is provided in Section 5.1.2, and robust

analysis is presented in Section 5.1.3 .

5.1.1 Estimation Results

In this section, the simulated data sets from the SV models with ρ = 0.5,

τ = 4, and β2 = 1, and ρ = −0.2, τ = 1.8, and β2 = 0.15 are considered. For

simplicity, these two models are defined as Model I and Model II respectively.

Assume that the initial value x0 = 0, and 30 data sets with 50 observations

50
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from each model are simulated to show the performance of the proposed meth-

ods. For simplicity, define the MCEM algorithm with the PIMH algorithm for

the MLE as Method I, and the MCEM algorithm with the resample-move al-

gorithm and the MCEM algorithm with the PMMH algorithm for Bayesian

estimation as Method II and Method III respectively. Initial values of Method

I are calculated by the formulas in Section 4.1.3, while λ(0) = 16 and δ(0) = 4

are set as the initial values of Method II and Method III. A small particle size of

the SMC algorithm in the PMCMC method is sufficient to obtain an estimator

of the marginal distribution pθ(y0:t); therefore, for Method I and Method III,

the particle sizes of the PIMH algorithm and the PMMH algorithm N are set

as 25, which is the same particle sizes set in Douc et al. (2014). In addition,

set α0 = 4 and µ0 = 3 under the Bayesian framework. Table 5.1 displays the

estimation results by using these three methods, which summarizes the mean

and the corresponding standard deviation of estimators for 30 data sets.

Table 5.1 Summary of estimation results for data sets with 50 observations by
three different methods.

Model I Model II
Method I Method II Method III Method I Method II Method III

ρ̂ 0.421 0.347 0.322 -0.299 -0.156 -0.041
(s.d.) (0.220) (0.188) (0.054) (0.303) (0.194) (0.073)
τ̂ 3.540 3.843 4.464 1.750 1.968 1.298

(s.d.) (1.451) (1.614) (1.630) (0.986) (1.040) (0.688)

β̂2 1.128 1.182 1.831 0.142 0.155 0.185
(s.d.) (0.689) (0.729) (0.308) (0.048) (0.054) (0.033)

From the above table, the estimators for τ and β2 are relatively close to

their true values, particularly for the estimators obtained by Method I and

Method II. However, the performances of the estimators for ρ are poor, which

are primarily because of the small number of observations. Furthermore, the

distances between estimators of ρ and 0 are smaller than those between true

values and 0 in the Bayesian analysis. The primary reason is that the prior of ρ
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is uniformly on (−1, 1), and pulls the posterior mean back to 0, which becomes

influential when the number of observations is small. Therefore, increasing the

number of observations may solve this problem.

To show this, the number of observations is increased up to 360, and the

corresponding results are displayed in Table 5.2. Compared with the results in

Table 5.1, all distances between the estimators and the true values are reduced

to an acceptable range. Furthermore, the standard deviations of the estimators

have been dramatically decreased.

Table 5.2 Estimation results for data sets with 360 observations by maximum
likelihood estimation.

ρ̂ τ̂ β̂2

(s.d.) (s.d.) (s.d.)

Model I
0.477 3.891 1.199

(0.096) (0.738) (0.308)

Model II
-0.229 1.708 0.148
(0.143) (0.334) (0.015)

To achieve convergence, the average computing time for data sets with 360

observations is more than 1.5 times the one for data sets with 50 observations.

Furthermore, because the estimators of τ and β2 obtained by Method II and

Method III in Table 5.1 are acceptable, 50 observations are sufficient to obtain

plausible estimators for λ and δ. For the purpose of reducing time, the last 50

observations of the data set are used to estimate λ and δ, and these two values

are then set as the hyper-parameters of the priors. Finally, the entire data set is

handled by the ordinary Bayesian method, which provides a Bayesian estimator

by means of the posterior distribution that derives from the priors with the

hyper-parameters and the likelihoods of all observations. These methods are

defined as modified Method II and modified Method III.

First, the phenomenon of underestimating ρ is explained by the ordi-

nary Bayesian method and the suitable number of observations is selected
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in Bayesian analysis. For simplicity, Model I is used to illustrate these tasks.

Because the true values are τ = 4 and β = 1, to focus on the performance of

ρ, λ = 16 and δ = 3 are set, which make the corresponding inverse gamma

distributions with means equaling the true values. The number of observations

is increased from 50 to 500, and the estimation results for ρ are presented in

Table 5.3. From the table, it is found that the estimators of ρ become closer

to the true value 0.5, and 360 observations are sufficient to obtain a reasonable

estimator.

Table 5.3 Estimation results for ρ with different numbers of observations (T ) by
Bayesian analysis with the Resample-move algorithm.

T 50 60 90 150 360 500
ρ̂ 0.381 0.413 0.441 0.477 0.496 0.517

(s.d.) (0.201) (0.249) (0.139) (0.119) (0.069) (0.054)

Now 30 data sets with 360 observations for Model I and Model II are sim-

ulated. As discussed, the observations 311-360 in each data set are used to

determine the corresponding hyper-parameters for priors of τ and β2. Based

on these priors, the entire data set is analyzed using the ordinary Bayesian

method. The results are presented in Table 5.4. It is found that the perfor-

mances of the estimators are greatly improved by Method II, which verify the

validation of the MCEM algorithm with the resample-move algorithm in this

framework. Unfortunately, the estimators by the MCEM algorithm with the

PMMH algorithm experience poor performance. This may be caused by bad

selection of the proposal distribution or by the small particle size of the SMC

algorithm in the PMMH algorithm. This problem will be considered in future

research.

The performances of two proposed methods, Method I and Method II, are

also compared. Table 5.1 shows that the estimators of ρ obtained by Method

I are more accurate, although the performances of estimators for τ and β2
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Table 5.4 Summary of estimation results for data sets with 360 observations by
two proposed Bayesian methods.

Model I Model II
modi. Method II modi. Method III modi. Method II modi. Method III

ρ̂ 0.481 0.317 -0.192 -0.038
(s.d.) (0.084) (0.054) (0.169) (0.076)
τ̂ 4.129 4.517 1.660 1.421

(s.d.) (0.513) (1.430) (0.389) (0.769)

β̂2 1.135 1.547 0.157 0.185
(s.d.) (0.294) (0.985) (0.018) (0.033)

obtained by these two methods are similar. Based on Table 5.2 and Table

5.4, the performances of estimators for τ and β2 by these two methods are

also similar, and Method II provides a better performance of ρ̂. Furthermore,

the average computation time by Method I is more than 1.5 times that of the

modified Method II, and the minimum computation time by Method I is 10

times more than that of the modified Method II. Because the entire data set

should be involved in the MCEM algorithm when performing the maximum

likelihood estimator, and 50 observations are sufficient to determine hyper-

parameters in modified Method II, the difference in computation time between

these two methods becomes larger as the number of observations increases.

Therefore, the computation time is another disadvantage for Method I when

the number of observations is large. Overall, the MLE is suitable when the

number of observation is small, and Bayesian estimators by modified Method

II is recommended when the number of observations increases to a large value.

In addition, these two proposed methods are also compared with the exist-

ing methods. To obtain the MLE for the SV model, the MCEM algorithm with

the FFBSi algorithm is discussed in Kim (2005). However, the convergence

rate of the MCEM algorithm with the FFBSi algorithm is quite slower than the

proposed method for MLE, because the PIMH algorithm is more efficient than
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the FFBSi algorithm to generate the sample from the joint smoothing distri-

butions. And Bayesian estimators for the SV model are typically obtained by

the Bayesian method with predetermined hyper-parameters, where both the

resample-move algorithm and the PMCMC method can be used to handle the

corresponding posterior distributions. However, the proposed Bayesian meth-

ods provide more robust estimators, which is verified by the comparison of the

typical Bayesian methods and the proposed Bayesian methods presented in

Section 5.1.3.

5.1.2 Sample Size Issue

An automated rule to determine whether the sample size should be increased

at each iteration in the implementation of the particle MCEM algorithm is

proposed in this thesis. This section demonstrates the performance of the

proposed rules compared with the predetermined values in McCulloch (1997),

in which the sample sizes for the first 19 iterations are set as 50, the sample

sizes for next 20 iterations are set as 200, and the remaining sizes are set as

5000.

Figure 5.1 presents the numbers of sample sizes at each iteration according

to the proposed rule and the predetermined rule when performing MLE by

the MCEM algorithm. During the first 19 iteration, the sample sizes for the

proposed method increase only slightly and are close to the ones for the pre-

determined case. The sample sizes start to increase at the 20th iteration, and

increase sharply during the last 20 iterations. It is obvious that the proposed

rule shows a better performance. The iterations in the proposed method are

less than half of the ones in the predetermined method, and only about 10

iterations in the proposed method have larger sample sizes than those in the

predetermined method. In addition, the computation time of predetermined
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method is almost three times that of the proposed method. When imple-

menting the MCEM algorithm with the PMMH algorithm in the framework

of Bayesian analysis, the increased sample sizes are similar, and the result is

presented in Figure 5.2.

Figure 5.1 Sample size comparison of maximum likelihood estimation by the M-
CEM algorith with the PIMH method: the proposed rule(+) and the predetermined
values (∗).
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Figure 5.3 presents the numbers of sample sizes at each iteration by the

proposed rule and the predetermined rule when performing Bayesian estima-

tion by the MCEM algorithm with the resample-move algorithm. As in the
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Figure 5.2 Increase in sample size by the MCEM algorithm with method III: the
proposed rule (+) and the predetermined values (∗).
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previous case, for the proposed method, the sample sizes in the first several

iterations grow slowly, and increase faster as the number of iterations increas-

es. Although the number of iterations in the proposed method is larger than

the one in predetermined method, the sample sizes in the proposed method

increase up to 4644, which is less than 5000, and thus the computation time

in the proposed method is also less in this case.

Figure 5.3 Increase in sample size by the MCEM algorithm with the resample-
move algorithm: the proposed rule (+) and the predetermined values(∗).
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5.1.3 Robust Analysis

Type II maximum likelihood prior is introduced to obtain a robust estimator

in this thesis. In typical Bayesian analysis, Bayesian estimators are highly

influenced by hyper-parameters, and the changes of hyper-parameters typically

cause the changes of estimators. The initial values of hyper-parameters in

the proposed proposed algorithm are subjective. However, the changes in

initial values rarely affect the estimators. To verify this, a robust analysis for

the proposed methods within the Bayesian framework are conducted in the

following section.

A data set with 50 observations of the SV model with ρ = 0.5, β = 1

and τ = 4 is simulated, and assume that the initial value x0 = 0. Eight

values {5, 8, 10, 15, 16, 20, 24, 30} are selected as the candidate set Λ0 for λ,

and six values {1, 3, 4, 6, 8, 10} as the candidate set ∆0 for δ. Forty-eight

groups are defined by the following rule: select the first element in ∆0, and

then select all the elements in Λ0 in order, and denote these eight groups by

index 1 − 8 in order; next, select the second element in ∆0, then select all

the elements in Λ0 in order, and denote these eight groups by index 9 − 16

in order; and so on. All 48 groups are considered to be the initial values in

the proposed Bayesian methods and the predetermined hyper-parameters in

the typical Bayesian analysis respectively. The selected estimation results are

presented in Figure 5.4 and Figure 5.5.

Figure 5.4 shows the estimation results for β2 by the MCEM algorith-

m with the resample-move algorithm and the Bayesian method with prede-

termined hyper-parameters. It is easy to see that the estimators β̂2 by the

Bayesian method with predetermined hyper-parameters have a larger fluctu-

ation than the ones by our method. In particular, the estimators β̂2 by the

proposed method fluctuate little around a horizontal line, and the ones by

the Bayesian method with predetermined hyper-parameters jump up once the
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Figure 5.4 Estimation Results of β2 for two methods: the MCEM algorithm with
the resample-move algorithm (line) and the Bayesian analysis with predetermined
hyper-parameters (◦).
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Figure 5.5 Estimation Results of τ for two methods: the MCEM algorithm with
the PMMH algorithm (line) and the Bayesian analysis with predetermined hyper-
parameters (◦).
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hyper-parameter δ increases. Figure 5.5 shows the estimation results for τ by

the MCEM algorithm with the PMMH algorithm and the Bayesian method

with predetermined hyper-parameters. The estimators τ̂ by the proposed

method fluctuate little around the horizontal line y = 4, and the estimators by

the ordinary Bayesian method change greatly as the hyper-parameter λ moves.

From these two figures, it can be seen that robustness is one of the advantages

of the proposed Bayesian methods compared with the Bayesian method with

predetermined hyper-parameters.

5.2 Empirical Study

At first, an application of the methods to RMB/dollar daily exchange rates

from July 1st 2013 to December 31th 2014 obtained from the State Adminis-

tration of Foreign Exchange is conducted. Figure 5.6 shows the time plot of

the log-return of the exchange rates, defined as

yt = log
rt
rt−1

, (5.1)

where rt is the daily exchange rate. From this return, we can find that the data

shows various level of volatility, and more obviously, the last 100 observations

fluctuate wildly, which is possibly caused by the quantitative easing monetary

policy adopted the Federal Reserve in the second half of 2014. It can also be

seen that this data set shows heteroscedasticity, and thus the SV model can

be used to describe these log-returns.

Three proposed methods are used to perform parameter estimation, and

the initial setting of each method is the same as in Section 5.1.1. The estima-

tion results by these three methods are presented in Table 5.5. The standard

deviations of maximum likelihood estimators are estimated as in Kim (2005)

to ensure the positive definite property of the estimated observed information

matrix. The standard deviations of Bayesian estimators are calculated using
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Figure 5.6 The time plot of log-return of RMB/dollar exchange rates from July
1st 2013 to December 31th 2014.
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the sample standard deviations of the samples for the corresponding param-

eters. Similar to the simulation study in Section 5.1.1, the estimation results

by Method I and Method are close, and ρ̂ in Method III is substantially small-

er than Method I and II. According to the simulation study, the estimators

in Method I and Method II are plausible. In addition, the estimators of β2

are of a small order of magnitude, because the relatively few changes in the

RMB/dollar exchange rates cause the values in log-returns to be small.

Table 5.5 Estimation results for the log-return of RMB/dollar exchange rates from
July 1st 2013 to December 31th 2014.

ρ̂ τ̂ β̂2

(s.d.) (s.d.) (s.d.)

Method I
0.593 0.318 2.83× 10−7

(0.093) (0.050) (2.87× 10−8)

Method II
0.541 0.366 2.90× 10−7

(0.148) (0.103) (3.07× 10−8)

Method III
0.217 0.397 3.74× 10−7

(0.483) (0.192) (1.55× 10−7)
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To further investigate the performance of Method I and Method II, the

RMB/dollar daily exchange rates from January 1st 2008 to June 30th 2009

are also studied. Figure 5.7 shows the time plot of the log-return of the corre-

sponding exchange rates. A large level volatility is presented at the first half

of data, which was primarily caused by the financial crisis happened in 2008.

Due to the heteroscedasticity property of this data set, the SV model is used

to handle this data. The estimation results are listed in Table 5.5.

Figure 5.7 The time plot of log-return of RMB/dollar exchange rates from January
1st 2008 to June 30th 2009.
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Table 5.6 Estimation results for the log-return of RMB/dollar exchange rates from
January 1st 2008 to June 30th 2009.

ρ̂ τ̂ β̂2

(s.d.) (s.d.) (s.d.)

Method I
0.989 0.093 9.14× 10−7

(0.010) (0.024) (5.76× 10−7)

Method II
0.992 0.054 9.76× 10−7

(0.007) (0.024) (2.95× 10−7)

The estimators of ρ and β2 by these two methods are close, and there are
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substantial difference between the estimators of τ . However, τ̂ by Method II

is covered by the confidence interval of τ by Method I, and the confidence

interval of τ by Method II also includes τ̂ by Method I. Therefore, the differ-

ence between these two estimators are probably caused by the Monte Carlo

errors. Compared to the estimation results for the data from July 1st 2013 to

December 31th 2014, the model for this data has higher ρ̂ but smaller τ̂ , which

shows that the unobserved volatilities in this model are more highly related to

each other with a smaller fluctuation. Furthermore, the higher level volatility

in this data set makes the estimators for β2 larger.
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Conclusions and Future Work

6.1 Conclusions

This thesis focuses on the inference for NLSS models by using particle method-

s. In the classical framework, the EM algorithm and the PIMH algorithm are

combined to obtain the maximum likelihood estimators. In Bayesian analysis,

type II maximum likelihood prior is introduced to obtain robust Bayesian esti-

mators. To obtain the estimators, the EM algorithm and the particle methods

are used together. More specifically, the MCEM algorithm with the resample-

move algorithm and the MCEM algorithm with the PMMH algorithm are used

to analyze this Bayesian problem respectively.

Another contribution of this thesis is to propose an automated rule to de-

cide whether the Monte Carlo sample size should be increased at each iteration

in the implementation of the MCEM algorithm with the PMCMC algorithm.

Renewal theory is used to construct a confidence interval of relative likelihood

at each iteration. Based on this confidence interval, an automated rule is de-

signed for increasing the sample size. Furthermore, it is shown that the rule

for sample size proposed in Booth and Robert (1999) is effective in the im-

plementation of the MCEM alorithm with the resample-move algorithm based

on the central limit theory of particle filters, which was validated in Chopin

(2004).

66
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For the purpose of illustration, the proposed methods are applied to s-

tochastic volatility model, which is presented in Section 4. In the simulation

study, the validation of MLE by the MCEM algorithm with the PIMH algo-

rithm and Bayesian estimators by the MCEM algorithm with the resample-

move algorithm is established. However, Bayesian estimators by the MCEM

algorithm with the PMMH algorithm fail to converge to the true values. Com-

parisons of the performances of these methods are also discussed. When the

number of observations is small, the MLE performs relatively well. However,

Bayesian estimators by the MCEM algorithm with the resample-move algo-

rithm are the most effective in terms of estimation accuracy and computation

time, and when the number of observations is large (e.g., 360 or more). The

empirical study also provides evidence of these two viewpoints. The robust-

ness of the proposed Bayesian methods compared with the ordinary Bayesian

method is also presented in the simulation study.

6.2 Future Work

The first task in the future is to find out the primary reason for poor perfor-

mance of the MCEM algorithm with the PMMH algorithm in the Bayesian

framework, and to propose a corresponding solution. More proposal distri-

butions in the PMMH algorithm can be tried to observe and summarize the

changes, and find out the suitable classes of proposal distributions. Increasing

the particle size N to strike a balance between the computational time and

the acceptance rate in the PMMH algorithm is another possible method.

When doing the maximum likelihood estimator in the SV Model, the

scheme introduced in Kim (2005) is used to determine the initial values of

the MCEM algorithm to save computation time. However, there is no discus-

sion of the initial value in the implementation of the MCEM algorithm within

the Bayesian framework. A more effective method is required to develop for a
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more efficient convergence in this situation.

Finally, to further investigate the performance of the proposed methods,

they can be applied to other special cases of NLSS models. The SV models

with particular modifications, such as the SV model with fat tails and the

SV model with jumps are typically used in empirical studies. The proposed

methods provide new approaches to handle these models.
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Appendix A

Proof of Convergence of the

Proposed MCEM Algorithm in

the SV Model

In this section, the same method as Kim and Stoffer (2008) is used to prove

the convergence of the proposed MCEM algorithm in Section 4.1 and Sec-

tion 4.2.2. The assumptions of convergence theorem proposed in Chan and

Ledolter (1995) are verified to establish the convergence property of the pro-

posed method. Below the theorem proposed in Chan and Ledolter (1995) is

restated and the restatement of assumptions introduced in Kim and Stoffer

(2008) is quoted. To simplify the notation, let X be the complete data and y

be the observations.

Theorem A.1 Suppose that Assumptions 1-4 below are satisfied. Let θ∗ be

an isolated local maximizer of ly(θ), the logarithm of the likelihood. Then

there exists a neighborhood denoted by V1 of θ∗ such that for start values of

the MCEM algorithm proposed in Chapter 4 inside V1 and for all ε1 > 0, there

exists a k0 such that P (| θ(k)
M − θ∗ |< ε1 for some k ≤ k0)→ 1 as M →∞.

Assumptions
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1. For all θ′, lX(θ′) = q(Z, θ′), where Z is a measurable vector function of

X, q is linear in Z and lX(θ′) is the complete likelihood at the parameter

θ′.

2. q(Z, ·) attains the unique global maximum atM(Z) andM is continuous

in Z.

3. The convergence, in probability, of Z̄M → Eθ(Z) as M →∞ is uniform

over compact subsets of Ω where Ω is a parameter space, Z̄M is the

sample mean of Z values computed from the sample X1(θ), . . . , XM(θ)

generated by particle methods.

4. ly(θ) is continuous in θ.

A.1 Proof of Convergence of the Proposed M-

CEM Algorithm for MLE of the SV Mod-

el

In the following, Assumptions 1-4 within the framework of Section 4.1 are

verified to prove the convergence of Algorithm 11.

In this case, the complete data is X = (x0:T , y0:T ) and the parameters are

θ = (ρ, τ, β2), then the log-likelihood of this complete data is

lX(θ) = −1

2

[
Z1 ·

1

τ
− 2Z2 ·

ρ

τ
+ Z3

ρ2

τ
− Z4 − Z5

1

β2
+ C(θ)

]
= q(Z, θ), (A.1)

where

Z = (Z1, . . . , Z5) = (
T∑
t=1

x2
t ,

T∑
t=1

xt−1xt,

T∑
t=1

xt−1,

T∑
t=1

xt,

T∑
t=1

yt
exp(xt)

) (A.2)

and C(θ) = T [log(4π2) + log(τ) + log(β2)]. It is easy to find that Z is a

measurable vector function of X and q is linear in Z. Hence, Assumption 1

holds.
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The log-likelihood function q(Z, ·) attains the unique global maximum at

M(Z), where

M(Z) =

(
arg max

ρ
q, arg max

τ
q, arg max

β2

q

)

=

(
Z2

Z3

,
Z1 − 2ρZ2 + ρ2Z3

T
,
Z5

T

)
. (A.3)

Furthermore, M(Z) is continuous in Z. Therefore, Assumption 2 holds.

Andrieu et al. (2010) shows that the PIMH algorithm is a standard IMH al-

gorithm. Furthermore, by Theorem 1 of Nummelin (2002), for any φ-integrable

function f ∫
f(x0:T )dφM0:T |T (x0:T ; θ)

P→ f(x0:T )dφ0:T |T (x0:T ; θ) (A.4)

As same as the proof in the appendix of Kim and Stoffer (2008), it can be

shown that Assumption 3 is satisfied.

Since

ly(θ) =

∫
· · ·
∫
lX(θ)dx0 · · · dxT , (A.5)

ly(θ) is continuous in θ. Therefore, Assumption 4 is satisfied, and the conver-

gence of Algorithm 11 holds.

A.2 Proof of Convergence of the Proposed M-

CEM Algorithm for Bayesian Analysis in

the SV Model

In this appendix, Assumptions 1-4 based on the Bayesian framework in Section

4.2.2 are verified to prove the convergence of Algorithm 14.
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In this case, the complete data is X = (x0:T , y0:T , ρ, τ, β
2) and the parame-

ters are θ = (γ, δ), then the log-likelihood of this complete data is

lX(θ) =− 1

2
[Z1 − 2Z2 + Z3 − Z4 − Z5]− (α0 + 1− T

2
)Z6 − γZ8

− (µ0 + 1− T

2
)Z8 − δZ9

=q(Z, θ),

(A.6)

where

Z =(Z1, . . . , Z9)

=(

∑T
t=1 x

2
t

τ
,
ρ
∑T

t=1 xt−1xt
τ

,
ρ2
∑T

t=1 xt−1

τ
,
T∑
t=1

xt,
T∑
t=1

yt
β2exp(xt)

,

log τ,
1

τ
, log β2,

1

β2
)

and C(θ) = −T log 2π+α0 log γ− log Γ(α0) +µ0 log δ− log Γ(µ0). It is easy to

find that Z is a measurable vector function of X and q is linear in Z. Hence,

Assumption 1 holds.

The log-likelihood function q(Z, ·) attains the unique global maximum at

M(Z), where

M(Z) =

(
arg max

γ
q, arg max

δ
q

)
=

(
α0

Z7

,
µ0

Z9

)
. (A.7)

Furthermore, M(Z) is continuous in Z. Therefore, Assumption 2 holds.

Andrieu et al. (2010) shows that the PMMH algorithm is a special case of

MH algorithm. The same as the proof in Appendix A.1, Assumption 3 can be

verified.

Since

ly(θ) =

∫
· · ·
∫
lX(θ)dx0 · · · dxTdρdτdβ2, (A.8)

ly(θ) is continuous in θ. Therefore, Assumption 4 is satisfied, and the conver-

gence of Algorithm 14 holds.
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